Nucleophilic/Oxidizing Degradation of Paraoxon and Thioanisole Using NH3 Modified Aqueous H2O2 Solution

Article Preview

Abstract:

Degradation of paraoxon and thioanisole (PhSMe) were studied using NH3 modified H2O2 solution as decontaminant. Degradation rates of paraoxon depend exponentially on pH of the modified solution. Nucleophilic substitution mediated by HOO- is the major degradation mechanism and at least two orders of magnitude faster than hydrolysis. Proton catalytic oxidation and solvent-aided oxidation contribute differently to the primary oxidation of PhSMe (PhSMe→PhS(O)Me), and the apparent kinetic constants (kap) of the primary oxidation show a three-stage profile with pH of the NH3-modified H2O2 solution. Secondary oxidation of PhSMe (PhS(O) Me→PhS(O)2Me) is much slower than the primary oxidation in the modified H2O2 solution, and the yield of PhS(O)2Me depended exponentially on pH too. The best pH range for the NH3 modified H2O2 solution as a broad-spectrum decontaminant is at 9.5-10.0 since a balance of nucleophilic/oxidizing decontamination reactivity could be achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-81

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.W. Wagner, Main Group Chemistry. 28 (2010) 257-263.

Google Scholar

[2] H. Xi, S. Zhao, W. Zhou, Environmental Science. 34 (2013) 1-8.

Google Scholar

[3] G.W. Wagner, D.C. Sorrick, L.R. Procell, Z.A. Hess, M.D. Brickhouse, I.F. McVey, L.I. Schwartz, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, (2003).

Google Scholar

[4] G.W. Wagner, D.C. Sorrick, L.R. Procell, M.D. Brickhouse, I.F. Mcvey, L.I. Schwartz, Langmuir. 23 (2007) 1178-1186.

DOI: 10.1021/la062708i

Google Scholar

[5] M.D. Brickhouse, A. Turetsky, B.K. Maclver, J.W. Pfarr, T.A. Lalain, L. McVey, W. Alter, J. Lloyd, Jr. M.A. Fonti, U.S. Army Research Development and Engineering Command, (2007).

Google Scholar

[6] L.N. Vakhitova, K.V. Matvienko, N.A. Taran, N.V. Lakhtarenko, A.F. Popov, Russian Journal of Organic Chemistry. 47 (2011) 965-973.

DOI: 10.1134/s1070428011070013

Google Scholar

[7] H. Fakhraian, F. Valizadeh, Journal of Molecular Catalysis A: Chemical. 333 (2010) 69-72.

Google Scholar

[8] I. Um, Y. Shin, S. Lee, K. Yang, E. Buncel, Journal of Organic Chemistry. 73 (2008) 923-930.

Google Scholar

[9] G.W. Wagner, Y. Yang, Industrial & Engineering Chemistry Research. 41 (2002) 1925-(1928).

Google Scholar

[10] L.N. Vakhitova, K.V. Matvienko, A.V. Skrypka, N.V. Lakhtarenko, N.A. Taran, V.V. Rybak, A.F. Popov, Theoretical and Experimental Chemistry. 46 (2010) 1-7.

DOI: 10.1007/s11237-010-9159-5

Google Scholar

[11] A.P. Burke, University of Florida, (2005).

Google Scholar

[12] L.N. Vakhitova, A.V. Skrypka, V.A. Savelova, A.F. Popov, B.V. Panchenko, Theoretical and Experimental Chemistry. 41 (2005) 98-104.

DOI: 10.1007/s11237-005-0027-7

Google Scholar

[13] D.A. Bennett, H. Yao, D.E. Richardson, Inorganic Chemistry. 40 (2001) 2996-3001.

Google Scholar

[14] Z. Rappoport, in: Z. Rappoport (Ed. ), The chemistry of peroxides, John Wiley & Sons Ltd, 2006, pp.1-92.

Google Scholar