The Natural Vacuum Desalination Technology in Seawater Desalination

Article Preview

Abstract:

Seawater desalination technology is an important way to solve the freshwater shortage problem. Natural vacuum desalination (NVD) technology generates very low pressure environment in the headspace of 10 meters high water column. The weight of the water column is balanced by atmospheric pressure, and low-temperature desalination proceeds in the headspace. NVD technology drives the desalination process without any mechanical pumping, and requires relatively inferior quality of device material and simple structures. In this paper, the basic theory of NVD technology is introduced and physical model is described. Research progresses of different types of NVD technologies are summarized, and the method of increasing freshwater production is pointed out. This paper also illustrates the outlook on future development of NVD technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

851-855

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Shi-chang: The exergetic efficiency of MSF process and the conditions of desalination by waste heat, Desalination, Vol. 44 (1983), p.39.

DOI: 10.1016/0011-9164(83)87099-4

Google Scholar

[2] J. De Gunzbourg and D. Larger: Cogeneration applied to very high efficiency thermal seawater desalination plants, Desalination, Vol. 125 (1999), p.203.

DOI: 10.1016/s0011-9164(99)00139-3

Google Scholar

[3] G. Kronenberg and F. Lokiec: Low-temperature distillation processes in single-and dual-purpose plants, Desalination, Vol. 136 (2001), p.189.

DOI: 10.1016/s0011-9164(01)00181-3

Google Scholar

[4] A. Midilli and T. Ayhan: Natural vacuum distillation technique—part I: theory and basics, International journal of energy research, Vol. 28 (2004), p.355.

DOI: 10.1002/er.970

Google Scholar

[5] K.S. Spiegler: Salt-water purification, Plenum Press, (1977).

Google Scholar

[6] V.G. Gude and N. Nirmalakhandan: Combined desalination and solar-assisted air-conditioning system, Energy Conversion and Management, Vol. 49 (2008), p.3326.

DOI: 10.1016/j.enconman.2008.03.030

Google Scholar

[7] G. Bemporad: Basic hydrodynamic aspects of a solar energy based desalination process, Solar Energy, Vol. 54 (1995), p.125.

DOI: 10.1016/0038-092x(94)00110-y

Google Scholar

[8] A. Midilli and T. Ayhan: Natural vacuum distillation technique—part II: Experimental investigation, International journal of energy research, Vol. 28 (2004), p.373.

DOI: 10.1002/er.969

Google Scholar

[9] T. Ayhan and H. Al Madani: Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique, Renewable energy, Vol. 35 (2010) p.506.

DOI: 10.1016/j.renene.2009.06.021

Google Scholar

[10] S. Al-Kharabsheh: Analysis of an innovative water desalination system using low-grade solar heat, Desalination, Vol. 156 (2003), p.323.

DOI: 10.1016/s0011-9164(03)00363-1

Google Scholar

[11] S. Kalogirou: Survey of solar desalination systems and system selection, Energy, Vol. 22 (1997) p.69.

Google Scholar

[12] S. Al-Kharabsheh and D.Y. Goswami: Experimental study of an innovative solar water desalination system utilizing a passive vacuum technique, Solar Energy, Vol. 75 (2003) p.395.

DOI: 10.1016/j.solener.2003.08.031

Google Scholar

[13] M. Abutayeh and D.Y. Goswami: Solar flash desalination under hydrostatically sustained vacuum, Journal of Solar Energy Engineering, Vol. 131 (2009), p.031016.

DOI: 10.1115/1.3142724

Google Scholar

[14] M. Abutayeh and D.Y. Goswami: Passive vacuum solar flash desalination, AIChE journal, Vol. 56 (2010), p.1196.

DOI: 10.1002/aic.12060

Google Scholar

[15] Y. Keren, H. Rubin, J. Atkinson, M. Priven and G. Bemporad: Theoretical and experimental comparison of conventional and advanced solar pond performance, Solar Energy, Vol. 51 (1993), p.255.

DOI: 10.1016/0038-092x(93)90121-4

Google Scholar

[16] S. Al-Kharabsheh and D.Y. Goswami: Theoretical analysis of a water desalination system using low grade solar heat, Journal of solar energy engineering, Vol. 126 (2004), p.774.

DOI: 10.1115/1.1669450

Google Scholar

[17] E. Krell: Handbook of laboratory distillation, Elsevier, (1982).

Google Scholar

[18] V.G. Gude and N. Nirmalakhandan: Desalination using low-grade heat sources, Journal of Energy Engineering, Vol. 134 (2008), p.95.

DOI: 10.1061/(asce)0733-9402(2008)134:3(95)

Google Scholar

[19] V.G. Gude and N. Nirmalakhandan: Desalination at low temperatures and low pressures, Desalination, Vol. 244 (2009), p.239.

DOI: 10.1016/j.desal.2008.06.005

Google Scholar

[20] V.G. Gude and N. Nirmalakhandan: Sustainable desalination using solar energy, Energy Conversion and Management, Vol. 51 (2010), p.2245.

DOI: 10.1016/j.enconman.2010.03.019

Google Scholar

[21] V.G. Gude, N. Nirmalakhandan and S. Deng: Desalination using solar energy: Towards sustainability, Energy, Vol. 36 (2011), p.78.

DOI: 10.1016/j.energy.2010.11.008

Google Scholar

[22] V.G. Gude, N. Nirmalakhandan and S. Deng: Low temperature process to recover impaired waters, Desalination and Water Treatment, Vol. 20 (2010), p.281.

DOI: 10.5004/dwt.2010.1613

Google Scholar

[23] V.G. Gude, N. Nirmalakhandan, S. Deng and A. Maganti: Low temperature desalination using solar collectors augmented by thermal energy storage, Applied Energy, Vol. 91 (2012), p.466.

DOI: 10.1016/j.apenergy.2011.10.018

Google Scholar

[24] V.G. Gude, N. Nirmalakhandan, S. Deng and A. Maganti: Feasibility study of a new two-stage low temperature desalination process, Energy Conversion and Management, Vol. 56 (2012), p.192.

DOI: 10.1016/j.enconman.2011.11.026

Google Scholar

[25] B.A. Moore, E. Martinson and D. Raviv: Waste to water: a low energy water distillation method, Desalination, Vol. 220 (2008) p.502.

DOI: 10.1016/j.desal.2007.01.050

Google Scholar