[1]
D.C. Li, C.J. Chang, C.C. Chen, W.C. Chen. Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case [J]. Omega, 40(6), 767-773 (2012).
DOI: 10.1016/j.omega.2011.07.007
Google Scholar
[2]
L.C. Hsu. Using improved grey forecasting models to forecast the output of opto-electronics industry [J]. Expert Systems with Applications. 38(11), 13879-13885 (2011).
DOI: 10.1016/j.eswa.2011.04.192
Google Scholar
[3]
A. Kheirkhah, A. Azadeh, M. Saberi, A. Azaron, H. Shakouri. Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis [J]. Computers & Industrial Engineering. 64(1), 425-441 (2013).
DOI: 10.1016/j.cie.2012.09.017
Google Scholar
[4]
P.C. Chang, C.Y. Fan, J.J. Lin. Monthly electricity demand forecasting based on aweighted evolving fuzzy neural network approach [J]. International Journal of Electrical Power & Energy Systems. 33(1), 17-27 (2011).
DOI: 10.1016/j.ijepes.2010.08.008
Google Scholar
[5]
I. Moghram, S. Rahman. Analysis and evaluation of five short-term load forecasting techniques [J]. IEEE Transactions on Power Systems. 4(4), 1484-1491 (1989).
DOI: 10.1109/59.41700
Google Scholar
[6]
Subrahmanya N, Shin YC. Constructive training of recurrent neural networks using hybrid optimization. Neurocomputing2010; 73: 2624–31.
DOI: 10.1016/j.neucom.2010.05.012
Google Scholar
[7]
Bashir ZA, El-Hawary ME. Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans Power Syst 2009; 24(1): 20–7.
DOI: 10.1109/tpwrs.2008.2008606
Google Scholar
[8]
X. Tong, Z. Wang, H. Yu, A research using hybrid RBF/Elman neural networks for intrusion detection system secure model, Computer Physics Communications 180(10) (2009) 1795–1801.
DOI: 10.1016/j.cpc.2009.05.004
Google Scholar
[9]
S. -Y. Chen, F. -J. Lin, K. -K. Shyu, Direct decentralized neural control for nonlinear MIMO magnetic levitation system, Neurocomputing 72 (13 5) (2009) 3220–3230.
DOI: 10.1016/j.neucom.2009.02.009
Google Scholar
[10]
H. -W. Ge, F. Qian, Y. -C. Liang, W. -l. Du, L. Wang, Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network, Nonlinear Analysis: Real World Applications 9 (4) (2008) 1345–1360.
DOI: 10.1016/j.nonrwa.2007.03.008
Google Scholar