Pedestrian Detection Based on Bag-of-Visual-Words and SVM Method

Article Preview

Abstract:

We propose a pedestrian detection approach based on bag-of-visual-words and SVM method. The image feature extraction and representation are extremely challenging tasks in pedestrian detection approach, which could impact the performance of pedestrian detection. In this paper, we propose that visual vocabulary is built by clustering SIFT features of image to visual words. Classification is taken using the support vector machine (SVM), for SVM having good non-linear function learning and generalization capability solid. Numerical experiments in the evaluation of INRIATREC pedestrian data sets and the action movies demonstrate that our method shows better performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-192

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. G. M. Snoek, B. Huurnink, et al: Adding Semantics to Detectors for Video Retrieval. Journal of IEEE TRANSACTIONS ON MULTIMEDIA, vol. 9, no. 5, pp.975-986, (2007).

DOI: 10.1109/tmm.2007.900156

Google Scholar

[2] X. Yuan, X. Y. Wei, Y. D. Song: Pedestrian Detection for Counting Applications Using a Top-View Camera. IEICE TRANSACTIONS on Information and Systems, Vol. E94-D, no. 6, pp.1269-1277, (2011).

DOI: 10.1587/transinf.e94.d.1269

Google Scholar

[3] R. Benenson, M. Mathias, et al: Pedestrian detection at 100 frames per second. Conference on Computer Vision and Pattern Recognition (CVPR),  pp.2903-2910, (2012).

DOI: 10.1109/cvpr.2012.6248017

Google Scholar

[4] Y. W. Xu, X. B. Cao, H. Qiao. An Efficient Tree Classifier Ensemble-Based Approach for Pedestrian Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 41, no. 1, pp.107-117, (2011).

DOI: 10.1109/tsmcb.2010.2046890

Google Scholar

[5] Benenson R, Mathias M, Timofte R, et al: Pedestrian detection at 100 frames per second. Computer Vision and Pattern Recognition, 2012 IEEE Conference on. IEEE, 2012: 2903-2910.

DOI: 10.1109/cvpr.2012.6248017

Google Scholar

[6] N. Dalal, B. Triggs: Histogram of oriented gradient for human detection. In CVPR, (2005).

Google Scholar

[7] P. Dollár, Z. Tu Perona, and S. Belongie: Integral channel features. In BMVC, (2009).

Google Scholar

[8] S. Bauer, U. Brunsmann, and S. Schlotterbeck-Macht: FPGA Implementation of a HOG-based Pedestrian Recognition System. presented at the Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe (MPC Workshop), Karlsruhe, 2009, p.49-58S.

Google Scholar

[9] Maji, A.C. Berg, and J. Malik: Classification using intersection kernel SVMs is efficient. In CVPR, (2008).

Google Scholar

[10] Cheng Hong,Zheng Nan-Ning,Qin Jun-Jie: Pedestrian detection using sparse Gabor filter and support vector machine. In: Proceedings of IEEE Intelligent Vehicles Symposium. Vienna,Austria,2005: 583-587.

DOI: 10.1109/ivs.2005.1505166

Google Scholar

[11] M. Szaras,A. Yoshizawa,M. Yamamoto,J. Ogata: Pedestrian detection with convolutional neural networks. In: Proceedings of IEEE Intelligent Vehicles Symposium. Las Vegas,Nevada. IEEE,2005: 224-229.

DOI: 10.1109/ivs.2005.1505106

Google Scholar

[12] P. Dollar, C. Wojek, B. Schiele, and P. Perona Pedestrian Detection: An Evaluation of the State of the Art. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012; 34 (4): 743.

DOI: 10.1109/tpami.2011.155

Google Scholar

[13] D. G. Lowe : Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp.91-110, (2004).

DOI: 10.1023/b:visi.0000029664.99615.94

Google Scholar

[14] F. F. Li, P Perona: A Bayesian Hierarchical Model for Learning Natural Scene Categories. In Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition, 2005. 524–531.

DOI: 10.1109/cvpr.2005.16

Google Scholar

[15] J. Yang, Y. G. Jiang, et al: Evaluating Bag-of-Visual-Words Representations in Scene Classification. In ACM Multimedia Information Retrieval (MIR), 2007. 197-206.

DOI: 10.1145/1290082.1290111

Google Scholar

[16] C. W. Hsu, C. C. Chang, and C. J. Lin: A Practical Guide to Support Vector Classification. Available at http: /www. csie. ntu. edu. tw/ cjlin.

Google Scholar