[1]
C. G. M. Snoek, B. Huurnink, et al: Adding Semantics to Detectors for Video Retrieval. Journal of IEEE TRANSACTIONS ON MULTIMEDIA, vol. 9, no. 5, pp.975-986, (2007).
DOI: 10.1109/tmm.2007.900156
Google Scholar
[2]
X. Yuan, X. Y. Wei, Y. D. Song: Pedestrian Detection for Counting Applications Using a Top-View Camera. IEICE TRANSACTIONS on Information and Systems, Vol. E94-D, no. 6, pp.1269-1277, (2011).
DOI: 10.1587/transinf.e94.d.1269
Google Scholar
[3]
R. Benenson, M. Mathias, et al: Pedestrian detection at 100 frames per second. Conference on Computer Vision and Pattern Recognition (CVPR), pp.2903-2910, (2012).
DOI: 10.1109/cvpr.2012.6248017
Google Scholar
[4]
Y. W. Xu, X. B. Cao, H. Qiao. An Efficient Tree Classifier Ensemble-Based Approach for Pedestrian Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 41, no. 1, pp.107-117, (2011).
DOI: 10.1109/tsmcb.2010.2046890
Google Scholar
[5]
Benenson R, Mathias M, Timofte R, et al: Pedestrian detection at 100 frames per second. Computer Vision and Pattern Recognition, 2012 IEEE Conference on. IEEE, 2012: 2903-2910.
DOI: 10.1109/cvpr.2012.6248017
Google Scholar
[6]
N. Dalal, B. Triggs: Histogram of oriented gradient for human detection. In CVPR, (2005).
Google Scholar
[7]
P. Dollár, Z. Tu Perona, and S. Belongie: Integral channel features. In BMVC, (2009).
Google Scholar
[8]
S. Bauer, U. Brunsmann, and S. Schlotterbeck-Macht: FPGA Implementation of a HOG-based Pedestrian Recognition System. presented at the Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe (MPC Workshop), Karlsruhe, 2009, p.49-58S.
Google Scholar
[9]
Maji, A.C. Berg, and J. Malik: Classification using intersection kernel SVMs is efficient. In CVPR, (2008).
Google Scholar
[10]
Cheng Hong,Zheng Nan-Ning,Qin Jun-Jie: Pedestrian detection using sparse Gabor filter and support vector machine. In: Proceedings of IEEE Intelligent Vehicles Symposium. Vienna,Austria,2005: 583-587.
DOI: 10.1109/ivs.2005.1505166
Google Scholar
[11]
M. Szaras,A. Yoshizawa,M. Yamamoto,J. Ogata: Pedestrian detection with convolutional neural networks. In: Proceedings of IEEE Intelligent Vehicles Symposium. Las Vegas,Nevada. IEEE,2005: 224-229.
DOI: 10.1109/ivs.2005.1505106
Google Scholar
[12]
P. Dollar, C. Wojek, B. Schiele, and P. Perona Pedestrian Detection: An Evaluation of the State of the Art. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012; 34 (4): 743.
DOI: 10.1109/tpami.2011.155
Google Scholar
[13]
D. G. Lowe : Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, vol. 60, no. 2, pp.91-110, (2004).
DOI: 10.1023/b:visi.0000029664.99615.94
Google Scholar
[14]
F. F. Li, P Perona: A Bayesian Hierarchical Model for Learning Natural Scene Categories. In Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition, 2005. 524–531.
DOI: 10.1109/cvpr.2005.16
Google Scholar
[15]
J. Yang, Y. G. Jiang, et al: Evaluating Bag-of-Visual-Words Representations in Scene Classification. In ACM Multimedia Information Retrieval (MIR), 2007. 197-206.
DOI: 10.1145/1290082.1290111
Google Scholar
[16]
C. W. Hsu, C. C. Chang, and C. J. Lin: A Practical Guide to Support Vector Classification. Available at http: /www. csie. ntu. edu. tw/ cjlin.
Google Scholar