Study of Parameters Configuration in Ant Colony Algorithm

Article Preview

Abstract:

It has obtained a better result to use ant colony algorithm to solve complex combinatorial optimization problems, but different value of the parameters in ant colony algorithm affects the performance of the algorithm. This paper studies the configuration of parameters in ant colony algorithm, and analyses the impact of the key parameters of the algorithm, and obtains the optimal parameter combination of using ant colony algorithm to solve TSP problems by using EIL51TSP data to simulate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-54

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy. Future Generation Computer System, 16(8): p.851~871, (2000).

DOI: 10.1016/s0167-739x(00)00042-x

Google Scholar

[2] Stutzle T, Hoos H. Max-min ant system[ J ]. Future Generation Computer System, 16 (8): p.889~914. (2000).

DOI: 10.1016/s0167-739x(00)00043-1

Google Scholar

[3] Nallaperuma, Samadhi, Wagner, Markus; Neumann, Frank. Ant colony optimisation and the traveling salesperson problem - Hardness, features and parameter settings. Proceedings of the 2013 Genetic and Evolutionary Computation Conference Companion, p.13~14, (2013).

DOI: 10.1145/2464576.2464581

Google Scholar

[4] Botee H M, Bonabeau E. Evolving ant colony optimization[J] Complex Systems, 1 (2) : p.149~159, (1998).

DOI: 10.1142/s0219525998000119

Google Scholar