The Effect of Photoinitiator Concentration on the Physicochemical Properties of Hydrogel Contact Lenses

Article Preview

Abstract:

Hydrogel soft contact lenses have been investigated as delivery systems for ophthalmic drug products in response to the need for more efficient ophthalmic drug delivery systems. Ocular drugs delivered via eye drops have a low residence time in the eye resulting in as low as 5% bioavailability of the therapeutic agent. This study investigates the effect of varying concentrations of the photoinitiator diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide (TPO) on the physicochemical properties of hydrogel soft contact lenses for ophthalmic drug delivery purposes. Contact lens samples were synthesised via photopolymerisation with a range of initiator concentration. Gel fraction and swelling results indicated that increasing the photoinitiator concentration increased the efficiency of the gel network and reduced the water content of contact lens samples. Fourier transform infra-red spectroscopy (FTIR) analysis was employed to confirm polymerisation of the lenses and also indicated the presence of residual photoinitiator in lenses with higher TPO concentrations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-127

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Xinming, C. Yingde, A. W. Lloyd, S. V. Mikhalovsky, S. R. Sandeman, C. A. Howel, L. Liewen, Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: A review: Contact Lens and Anterior Eye (2008) v. 31, pp.57-64.

DOI: 10.1016/j.clae.2007.09.002

Google Scholar

[2] H. Hiratani, C. Alvarez-Lorenzo, The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems: Biomaterials (2004) v. 25, pp.1105-1113.

DOI: 10.1016/s0142-9612(03)00622-7

Google Scholar

[3] H.J. Jung, A. Chauhan, Temperature sensitive contact lenses for triggered ophthalmic drug delivery: Biomaterials (2012) v. 33, pp.2289-2300.

DOI: 10.1016/j.biomaterials.2011.10.076

Google Scholar

[4] E.M. del Amo, A. Urtti, Current and future ophthalmic drug delivery systems: A shift to the posterior segment: Drug Discovery Today (2008) v. 13, pp.135-143.

DOI: 10.1016/j.drudis.2007.11.002

Google Scholar

[5] C. -C., Li, A. Chauhan, Modeling ophthalmic drug delivery by soaked contact lenses: Ind. Eng. Chem. Res. (2006) v. 45, pp.3718-3734.

DOI: 10.1021/ie0507934

Google Scholar

[6] C. -C. Peng, M. T. Burke, B. E. Carbia, C. Plummer, A. Chauhan, Extended drug delivery by contact lenses for glaucoma therapy: Journal of Controlled Release (2012) v. 162, pp.152-158.

DOI: 10.1016/j.jconrel.2012.06.017

Google Scholar

[7] X. -Z. Zhang, D. -Q. Wu, and C. -C. Chu, Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels: Biomaterials (2004) v. 25, pp.3793-3805.

DOI: 10.1016/j.biomaterials.2003.10.065

Google Scholar

[8] R. C. Peterson, J. S. Wolffsohn, J. Nick, L. Winterton, J. Lally, Clinical performance of daily disposable soft contact lenses using sustained release technology: Contact Lens and Anterior Eye (2006) v. 29, pp.127-134.

DOI: 10.1016/j.clae.2006.03.004

Google Scholar

[9] H. Gupta, M. Aqil, Contact lenses in ocular therapeutics: Drug Discovery Today (2012) v. 17, pp.522-527.

DOI: 10.1016/j.drudis.2012.01.014

Google Scholar

[10] R. Garhwal, S. F. Shady, E. J. Ellis, J. Y. Ellis, C. D. Leahy, S. P. McCarthy, K. S. Crawford, P. Gaines, Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials: Investigative Ophthalmology & Visual Science (2012).

DOI: 10.1167/iovs.11-8215

Google Scholar

[11] H.J. Jung, M. Abou-Jaoude, B. E. Carbia, C. Plummer, A. Chauhan, Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses: Journal of Controlled Release (2013) v. 165, pp.82-89.

DOI: 10.1016/j.jconrel.2012.10.010

Google Scholar

[12] H. Hiratani, C. Alvarez-Lorenzo, Timolol uptake and release by imprinted soft contact lenses made of N, N-diethylacrylamide and methacrylic acid: Journal of Controlled Release (2002) v. 83, pp.223-230.

DOI: 10.1016/s0168-3659(02)00213-4

Google Scholar

[13] P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution, Biomaterials (2001) Dec; 22(24): 3273-83.

DOI: 10.1016/s0142-9612(01)00165-x

Google Scholar

[14] M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery: Advanced Drug Delivery Reviews (2008) v. 60, pp.1638-1649.

DOI: 10.1016/j.addr.2008.08.002

Google Scholar

[15] P. Chhabra, R. Gupta, G. Suri, M. Tyagi, G. Seshadri, S. Sabharwal, U. K. Niyogi, R.K. Khandal, Studies on Development of Polymeric Materials Using Gamma Irradiation for Contact and Intraocular Lenses: International Journal of Polymer Science (2009).

DOI: 10.1155/2009/906904

Google Scholar

[16] F. Yañez, A. Concheiro, C. Alvarez-Lorenzo, Macromolecule release and smoothness of semi-interpenetrating PVP–pHEMA networks for comfortable soft contact lenses: European Journal of Pharmaceutics and Biopharmaceutics (2008) v. 69, pp.1094-1103.

DOI: 10.1016/j.ejpb.2008.01.023

Google Scholar

[17] M. Paul, H.B. Park, B. D Freeman, A. Roy, J.E. McGrath, J.S. Riffle, Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes, Polymer 49 (2008).

DOI: 10.1016/j.polymer.2008.02.039

Google Scholar

[18] C. Soykan, A. Delibas, and R. Coskun, Copolymers of N-(4-bromophenyl)-2-methacrylamide with 2-hydroxyethyl methacrylate: eXPRESS Polymer Letters (2007) v. 1, pp.594-603.

DOI: 10.3144/expresspolymlett.2007.81

Google Scholar

[19] S.L.J. Tomić, M. M. Mićić, J. M. Filipović, E. H. Suljovrujić, Synthesis, characterization and controlled release of cephalexin drug from smart poly(2-hydroxyethyl methacrylate/poly(alkylene glycol)(meth)acrylates hydrogels: Chemical Engineering Journal (2010).

DOI: 10.1016/j.cej.2010.03.089

Google Scholar

[20] European Commission Regulation No 1272/2008 of 16 December (2008).

Google Scholar

[21] F. Fornasiero, M. Ung, C. J. Radke, J. M. Prausnitz, Glass-transition temperatures for soft-contact-lens materials. Dependence on water content: Polymer (2005) v. 46, pp.4845-4852.

DOI: 10.1016/j.polymer.2005.03.084

Google Scholar

[22] Q. Garrett, B. Laycock, and R. W. Garrett, Hydrogel lens monomer constituents modulate protein sorption: Investigative  Ophthalmology & Visual Science (2000) v. 41, pp.1687-1695.

Google Scholar

[23] M.S. Lord, M. H. Stenzel, A. Simmons, and B. K. Milthorpe, The effect of charged groups on protein interactions with poly(HEMA) hydrogels: Biomaterials (2006) v. 27, pp.567-575.

DOI: 10.1016/j.biomaterials.2005.06.010

Google Scholar

[24] L. Santos, D. Rodrigues, M. Lira, M. Real Oliveira, R. Oliveira, E. Vilar, J. Azeredo, Bacterial adhesion to worn silicone hydrogel contact lenses.: Optom Vis Sci (2008) v. 85, pp.520-524.

DOI: 10.1097/opx.0b013e31817c92f3

Google Scholar