[1]
L. Xinming, C. Yingde, A. W. Lloyd, S. V. Mikhalovsky, S. R. Sandeman, C. A. Howel, L. Liewen, Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: A review: Contact Lens and Anterior Eye (2008) v. 31, pp.57-64.
DOI: 10.1016/j.clae.2007.09.002
Google Scholar
[2]
H. Hiratani, C. Alvarez-Lorenzo, The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems: Biomaterials (2004) v. 25, pp.1105-1113.
DOI: 10.1016/s0142-9612(03)00622-7
Google Scholar
[3]
H.J. Jung, A. Chauhan, Temperature sensitive contact lenses for triggered ophthalmic drug delivery: Biomaterials (2012) v. 33, pp.2289-2300.
DOI: 10.1016/j.biomaterials.2011.10.076
Google Scholar
[4]
E.M. del Amo, A. Urtti, Current and future ophthalmic drug delivery systems: A shift to the posterior segment: Drug Discovery Today (2008) v. 13, pp.135-143.
DOI: 10.1016/j.drudis.2007.11.002
Google Scholar
[5]
C. -C., Li, A. Chauhan, Modeling ophthalmic drug delivery by soaked contact lenses: Ind. Eng. Chem. Res. (2006) v. 45, pp.3718-3734.
DOI: 10.1021/ie0507934
Google Scholar
[6]
C. -C. Peng, M. T. Burke, B. E. Carbia, C. Plummer, A. Chauhan, Extended drug delivery by contact lenses for glaucoma therapy: Journal of Controlled Release (2012) v. 162, pp.152-158.
DOI: 10.1016/j.jconrel.2012.06.017
Google Scholar
[7]
X. -Z. Zhang, D. -Q. Wu, and C. -C. Chu, Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels: Biomaterials (2004) v. 25, pp.3793-3805.
DOI: 10.1016/j.biomaterials.2003.10.065
Google Scholar
[8]
R. C. Peterson, J. S. Wolffsohn, J. Nick, L. Winterton, J. Lally, Clinical performance of daily disposable soft contact lenses using sustained release technology: Contact Lens and Anterior Eye (2006) v. 29, pp.127-134.
DOI: 10.1016/j.clae.2006.03.004
Google Scholar
[9]
H. Gupta, M. Aqil, Contact lenses in ocular therapeutics: Drug Discovery Today (2012) v. 17, pp.522-527.
DOI: 10.1016/j.drudis.2012.01.014
Google Scholar
[10]
R. Garhwal, S. F. Shady, E. J. Ellis, J. Y. Ellis, C. D. Leahy, S. P. McCarthy, K. S. Crawford, P. Gaines, Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials: Investigative Ophthalmology & Visual Science (2012).
DOI: 10.1167/iovs.11-8215
Google Scholar
[11]
H.J. Jung, M. Abou-Jaoude, B. E. Carbia, C. Plummer, A. Chauhan, Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses: Journal of Controlled Release (2013) v. 165, pp.82-89.
DOI: 10.1016/j.jconrel.2012.10.010
Google Scholar
[12]
H. Hiratani, C. Alvarez-Lorenzo, Timolol uptake and release by imprinted soft contact lenses made of N, N-diethylacrylamide and methacrylic acid: Journal of Controlled Release (2002) v. 83, pp.223-230.
DOI: 10.1016/s0168-3659(02)00213-4
Google Scholar
[13]
P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution, Biomaterials (2001) Dec; 22(24): 3273-83.
DOI: 10.1016/s0142-9612(01)00165-x
Google Scholar
[14]
M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery: Advanced Drug Delivery Reviews (2008) v. 60, pp.1638-1649.
DOI: 10.1016/j.addr.2008.08.002
Google Scholar
[15]
P. Chhabra, R. Gupta, G. Suri, M. Tyagi, G. Seshadri, S. Sabharwal, U. K. Niyogi, R.K. Khandal, Studies on Development of Polymeric Materials Using Gamma Irradiation for Contact and Intraocular Lenses: International Journal of Polymer Science (2009).
DOI: 10.1155/2009/906904
Google Scholar
[16]
F. Yañez, A. Concheiro, C. Alvarez-Lorenzo, Macromolecule release and smoothness of semi-interpenetrating PVP–pHEMA networks for comfortable soft contact lenses: European Journal of Pharmaceutics and Biopharmaceutics (2008) v. 69, pp.1094-1103.
DOI: 10.1016/j.ejpb.2008.01.023
Google Scholar
[17]
M. Paul, H.B. Park, B. D Freeman, A. Roy, J.E. McGrath, J.S. Riffle, Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes, Polymer 49 (2008).
DOI: 10.1016/j.polymer.2008.02.039
Google Scholar
[18]
C. Soykan, A. Delibas, and R. Coskun, Copolymers of N-(4-bromophenyl)-2-methacrylamide with 2-hydroxyethyl methacrylate: eXPRESS Polymer Letters (2007) v. 1, pp.594-603.
DOI: 10.3144/expresspolymlett.2007.81
Google Scholar
[19]
S.L.J. Tomić, M. M. Mićić, J. M. Filipović, E. H. Suljovrujić, Synthesis, characterization and controlled release of cephalexin drug from smart poly(2-hydroxyethyl methacrylate/poly(alkylene glycol)(meth)acrylates hydrogels: Chemical Engineering Journal (2010).
DOI: 10.1016/j.cej.2010.03.089
Google Scholar
[20]
European Commission Regulation No 1272/2008 of 16 December (2008).
Google Scholar
[21]
F. Fornasiero, M. Ung, C. J. Radke, J. M. Prausnitz, Glass-transition temperatures for soft-contact-lens materials. Dependence on water content: Polymer (2005) v. 46, pp.4845-4852.
DOI: 10.1016/j.polymer.2005.03.084
Google Scholar
[22]
Q. Garrett, B. Laycock, and R. W. Garrett, Hydrogel lens monomer constituents modulate protein sorption: Investigative Ophthalmology & Visual Science (2000) v. 41, pp.1687-1695.
Google Scholar
[23]
M.S. Lord, M. H. Stenzel, A. Simmons, and B. K. Milthorpe, The effect of charged groups on protein interactions with poly(HEMA) hydrogels: Biomaterials (2006) v. 27, pp.567-575.
DOI: 10.1016/j.biomaterials.2005.06.010
Google Scholar
[24]
L. Santos, D. Rodrigues, M. Lira, M. Real Oliveira, R. Oliveira, E. Vilar, J. Azeredo, Bacterial adhesion to worn silicone hydrogel contact lenses.: Optom Vis Sci (2008) v. 85, pp.520-524.
DOI: 10.1097/opx.0b013e31817c92f3
Google Scholar