Structure and Properties of Al–Ti Multilayered Composites with Intermetallic Layers

Article Preview

Abstract:

In this paper growingtheintermetalliclayers at the interfaces of explosively welded titanium and aluminum plates have been investigated. It was shown that explosion welding was the efficient technology for forming multilayered stacks consisted of dissimilar materials. This method provided the firm joint formation between metallic plates. Heat treatment of explosively welded workpieces allowed obtaining the Al3Ti intermetallic phase at titanium-aluminum interfaces. Formation of intermetallic layer proceeded inhomogeneously in cross-section of the composite due to the structural particularities of interfaces and adjacent arias formed during the explosion welding process. The titanium aluminide growth ratedecreased corresponding to increaseof the intermetallic layer thickness. Intermetallic phase is notable for its high hardness and elasticity. Microhardness and Young’s module in the composite explosively welded and annealed at 640 оС reached 7.5 GPaand 280GPa respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-137

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.A. Bataev, A.A. Bataev, V.I. Mali, M.A. Esikov, V.A. Bataev, V.V. Bazarkina, D.V. Pavliukova, Peculiarities of weld seams and adjacent zones structures formed in process of explosive welding of sheet steel plates, Mater. Sci. Forum. 673 (2011).

DOI: 10.4028/www.scientific.net/msf.673.95

Google Scholar

[2] V.I. Mali, I.A. Bataev, A. A, Bataev, D.V. Pavliukova, E.A. Prikhodko, M.A. Esikov, Geometric transformations of sheet steel billets in explosion welding of multiple sandwiches, Phys. Mesomech. 14(6) (2011) 117–124.

DOI: 10.1109/ifost.2011.6020951

Google Scholar

[3] I.A. Bataev, A.A. Bataev, I.A. Balagansky, V.G. Burov, E.A. Prikhodko, N.A. Moreva, A.A. Ruktuev, Plastic flow localization in explosion-deformed low-carbon steel, Phys. Mesomech. 14(1) (2011) 93–99.

Google Scholar

[4] I.A. Bataev, A.A. Bataev, V.I. Mali, V.G. Burov, E.A. Prikhod`ko, Formation and structure of vortex zones arising upon explosion welding of carbon steels, The Physics of Metals and Metallography. 113(3) (2012) 247-254.

DOI: 10.1134/s0031918x12030039

Google Scholar

[5] I.A. Bataev, A.A. Bataev, V.I. Mali, V.A. Bataev, I.A. Balagansky, Structural changes of surface layers of steel plates in the process of explosion welding, Met. Sci. Heat Treat. 9 (2013) 54-59.

DOI: 10.1007/s11041-014-9663-7

Google Scholar

[6] I.A. Bataev, A.A. Bataev, V.I. Mali, V.G. Burov, A.I. Smirnov, E.A. Prikhod`ko, E.D. Golovin, Structure and Fatigue Crack Resistance of Multilayer Materials produced by Explosive Welding, Adv. Mater. Res. 287-290 (2011) 108-111.

DOI: 10.4028/www.scientific.net/amr.287-290.108

Google Scholar

[7] E.B. Makarova, I.A. Balagansky, T.V. Zhuravina, A.I. Smirnov, I.A. Bataev, V.I. Mali, Structure and mechanical properties of layered composite materials, consisting of pure titanium, Obrabotkametallov. 2 (2011) 43–45.

Google Scholar

[8] R. R. Adharapurapu, K. S. Vecchio, F. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans., A. 36(6) (2005).

DOI: 10.1007/s11661-005-0251-8

Google Scholar

[9] Ya. I. Evich, Yu. N. Podrezov, M.V. Remez, N.P. Korzhova, T.N. Legka, V.H. Melnik, Temperaturnayazavisimost` predelatekuchestisplavovnaosnovetrialyuminidatitana s L12-reshetkoy, Elektronnaiamicroscopiia I prochnost` materialov, sb. Nauch. Trudov, Kiev. 16 (2009).

Google Scholar

[10] F. Zhang, L. Lu, M.O. Lai, F.H.S. Froes, Grain growth and recrystallization of nano crystalline Al3Ti prepared by mechanical alloying, J. Mater. Sci. 38(3) (2003) 613–619.

Google Scholar

[11] Yu.V. Milman, D.B. Miracle, S.I. Chugunova, I.V. Voskoboinik, N.P. Korzhova, T.N. Legkaya, Yu.N. Podrezov, Mechanical behavior of Al3Ti intermetallics and L12 phases on its basis, Intermetallics 9(9) (2001) 839–845.

DOI: 10.1016/s0966-9795(01)00073-5

Google Scholar

[12] J.P. Nic, S. Zhang, D.E. Mikkola, Observation on the systematic alloying of Al3Ti with forth period elements to yield cubic phases, Scripta Mater. 24 (1990) 1099–1104.

DOI: 10.1016/0956-716x(90)90306-2

Google Scholar

[13] T. Li, F. Grignon, D.J. Benson, K.S. Vecchio, E.A. Olevsky, F. Jiang, A. Rohatgi, R.B. Schwarz, M.A. Meyers. Мodeling the elastic properties and damage evolution in Тi-Al3Ti metal-intermetallic laminate (MIL) composites, Mater. Sci Eng., A. 374(1-2) (2004).

DOI: 10.1016/j.msea.2003.09.074

Google Scholar

[14] A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites, Acta Mater. 5(10) (2003) 2933–2957.

DOI: 10.1016/s1359-6454(03)00108-3

Google Scholar

[15] L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L. H. He, Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Scripta Mater. 52(3) 2005 243–248.

DOI: 10.1016/j.scriptamat.2004.09.010

Google Scholar

[16] L.M. Peng, J.H. Wang, H. Li, Processing and mechanical behavior of laminated titanium–titanium tri-aluminide (Ti-Al3Ti) composites, Mater. Sci. Eng., A. 406(1-2) (2005) 309–318.

DOI: 10.1016/j.msea.2005.06.067

Google Scholar

[17] S.D. Gercriken, I. Ya. Dehtiar, Diphphuziia v metallahisplavah v tviordoi phase, Moscow, (1960).

Google Scholar

[18] A.A. Deribas, Physicauprochneniiaisvarkivzrivom, second ed., Nauka, Novosibirsk, (1980).

Google Scholar

[19] V.I. Mali, I.A. Bataev, A.A. Bataev, A.I. Smirnov, D.V. Pavliukova, P. S.  Yartsev. Formation of the intermetallic layers in Ti-Al multilayer composites, Adv. Mater. Res. 311-313 (2011) 236-239.

DOI: 10.4028/www.scientific.net/amr.311-313.236

Google Scholar

[20] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.

DOI: 10.1016/j.matdes.2011.09.030

Google Scholar

[21] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, P.S. Yartsev, E.D. Golovin, Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, The Physics of Metals and Metallography. 113(10) (2012) 998-1007.

DOI: 10.1134/s0031918x12070022

Google Scholar

[22] D.V. Pavliukova, V.I. Mali, A.A. Bataev, P.S. Yartsev, T.S. Sameyshcheva, L.I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, The 8th International forum on strategic technology (IFOST 2013). 1 (2013).

DOI: 10.1109/ifost.2013.6616967

Google Scholar