[1]
I.A. Bataev, A.A. Bataev, V.I. Mali, M.A. Esikov, V.A. Bataev, V.V. Bazarkina, D.V. Pavliukova, Peculiarities of weld seams and adjacent zones structures formed in process of explosive welding of sheet steel plates, Mater. Sci. Forum. 673 (2011).
DOI: 10.4028/www.scientific.net/msf.673.95
Google Scholar
[2]
V.I. Mali, I.A. Bataev, A. A, Bataev, D.V. Pavliukova, E.A. Prikhodko, M.A. Esikov, Geometric transformations of sheet steel billets in explosion welding of multiple sandwiches, Phys. Mesomech. 14(6) (2011) 117–124.
DOI: 10.1109/ifost.2011.6020951
Google Scholar
[3]
I.A. Bataev, A.A. Bataev, I.A. Balagansky, V.G. Burov, E.A. Prikhodko, N.A. Moreva, A.A. Ruktuev, Plastic flow localization in explosion-deformed low-carbon steel, Phys. Mesomech. 14(1) (2011) 93–99.
Google Scholar
[4]
I.A. Bataev, A.A. Bataev, V.I. Mali, V.G. Burov, E.A. Prikhod`ko, Formation and structure of vortex zones arising upon explosion welding of carbon steels, The Physics of Metals and Metallography. 113(3) (2012) 247-254.
DOI: 10.1134/s0031918x12030039
Google Scholar
[5]
I.A. Bataev, A.A. Bataev, V.I. Mali, V.A. Bataev, I.A. Balagansky, Structural changes of surface layers of steel plates in the process of explosion welding, Met. Sci. Heat Treat. 9 (2013) 54-59.
DOI: 10.1007/s11041-014-9663-7
Google Scholar
[6]
I.A. Bataev, A.A. Bataev, V.I. Mali, V.G. Burov, A.I. Smirnov, E.A. Prikhod`ko, E.D. Golovin, Structure and Fatigue Crack Resistance of Multilayer Materials produced by Explosive Welding, Adv. Mater. Res. 287-290 (2011) 108-111.
DOI: 10.4028/www.scientific.net/amr.287-290.108
Google Scholar
[7]
E.B. Makarova, I.A. Balagansky, T.V. Zhuravina, A.I. Smirnov, I.A. Bataev, V.I. Mali, Structure and mechanical properties of layered composite materials, consisting of pure titanium, Obrabotkametallov. 2 (2011) 43–45.
Google Scholar
[8]
R. R. Adharapurapu, K. S. Vecchio, F. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans., A. 36(6) (2005).
DOI: 10.1007/s11661-005-0251-8
Google Scholar
[9]
Ya. I. Evich, Yu. N. Podrezov, M.V. Remez, N.P. Korzhova, T.N. Legka, V.H. Melnik, Temperaturnayazavisimost` predelatekuchestisplavovnaosnovetrialyuminidatitana s L12-reshetkoy, Elektronnaiamicroscopiia I prochnost` materialov, sb. Nauch. Trudov, Kiev. 16 (2009).
Google Scholar
[10]
F. Zhang, L. Lu, M.O. Lai, F.H.S. Froes, Grain growth and recrystallization of nano crystalline Al3Ti prepared by mechanical alloying, J. Mater. Sci. 38(3) (2003) 613–619.
Google Scholar
[11]
Yu.V. Milman, D.B. Miracle, S.I. Chugunova, I.V. Voskoboinik, N.P. Korzhova, T.N. Legkaya, Yu.N. Podrezov, Mechanical behavior of Al3Ti intermetallics and L12 phases on its basis, Intermetallics 9(9) (2001) 839–845.
DOI: 10.1016/s0966-9795(01)00073-5
Google Scholar
[12]
J.P. Nic, S. Zhang, D.E. Mikkola, Observation on the systematic alloying of Al3Ti with forth period elements to yield cubic phases, Scripta Mater. 24 (1990) 1099–1104.
DOI: 10.1016/0956-716x(90)90306-2
Google Scholar
[13]
T. Li, F. Grignon, D.J. Benson, K.S. Vecchio, E.A. Olevsky, F. Jiang, A. Rohatgi, R.B. Schwarz, M.A. Meyers. Мodeling the elastic properties and damage evolution in Тi-Al3Ti metal-intermetallic laminate (MIL) composites, Mater. Sci Eng., A. 374(1-2) (2004).
DOI: 10.1016/j.msea.2003.09.074
Google Scholar
[14]
A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites, Acta Mater. 5(10) (2003) 2933–2957.
DOI: 10.1016/s1359-6454(03)00108-3
Google Scholar
[15]
L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L. H. He, Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Scripta Mater. 52(3) 2005 243–248.
DOI: 10.1016/j.scriptamat.2004.09.010
Google Scholar
[16]
L.M. Peng, J.H. Wang, H. Li, Processing and mechanical behavior of laminated titanium–titanium tri-aluminide (Ti-Al3Ti) composites, Mater. Sci. Eng., A. 406(1-2) (2005) 309–318.
DOI: 10.1016/j.msea.2005.06.067
Google Scholar
[17]
S.D. Gercriken, I. Ya. Dehtiar, Diphphuziia v metallahisplavah v tviordoi phase, Moscow, (1960).
Google Scholar
[18]
A.A. Deribas, Physicauprochneniiaisvarkivzrivom, second ed., Nauka, Novosibirsk, (1980).
Google Scholar
[19]
V.I. Mali, I.A. Bataev, A.A. Bataev, A.I. Smirnov, D.V. Pavliukova, P. S. Yartsev. Formation of the intermetallic layers in Ti-Al multilayer composites, Adv. Mater. Res. 311-313 (2011) 236-239.
DOI: 10.4028/www.scientific.net/amr.311-313.236
Google Scholar
[20]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[21]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, P.S. Yartsev, E.D. Golovin, Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, The Physics of Metals and Metallography. 113(10) (2012) 998-1007.
DOI: 10.1134/s0031918x12070022
Google Scholar
[22]
D.V. Pavliukova, V.I. Mali, A.A. Bataev, P.S. Yartsev, T.S. Sameyshcheva, L.I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, The 8th International forum on strategic technology (IFOST 2013). 1 (2013).
DOI: 10.1109/ifost.2013.6616967
Google Scholar