Laser-Microplasma Reactive Powder Spraying of Titanium Coatings with Nitride Phases

Article Preview

Abstract:

One of the actual problems of modern surface engineering is to improve the wear and corrosion resistance of structural elements made ​​of titanium and titanium alloys, which owing to a number of unique characteristics are becoming more widely used in industries such as aerospace, chemical engineering, medicine and many others. Promising way to improve the tribological characteristics as well as corrosion resistance in aggressive environments of such materials is the formation of titanium nitride layers on the surface. Titanium nitride is characterized by high hardness (up to 20000 MPa), wear resistance, chemical resistance and high refractory properties [1], which allows to significantly expand applicability and product lifetime of these materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-281

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. V. Samsonov. Nitridy,  Naukova dumka, 196,  pp.133-158.

Google Scholar

[2] Donald M. Mattox. Handbook of Physical Vapor Deposition (PVD) Processing, Second Edition, Published by Elsevier Inc., (2010).

DOI: 10.1016/b978-0-8155-2037-5.00016-2

Google Scholar

[3] P. Motte, M. Proust, J. Torres, Y. Gobil, Y. Morand, J. Palleau, R. Pantel. TiN-CVD process optimization for integration with Cu-CVD, Microelectronic Eng. 50 (2000), pp.369-374.

DOI: 10.1016/s0167-9317(99)00304-4

Google Scholar

[4] D.S. Rickerby, P.J. Burneet. The wear and corrosion resistance of hard PVD coatings, Surf. Coat. Technol. 33 (1987) 191–211.

DOI: 10.1016/0257-8972(87)90188-5

Google Scholar

[5] F. Qunlang, Z. Yu. The corrosion resistance and wear resistance of thick TiN coatings deposited by arc ion plating, Surf. Coat. Technol. 145 (2001) 80–87.

DOI: 10.1016/s0257-8972(01)01284-1

Google Scholar

[6] D. A. Jager, D. Stover, W. Schlump. High pressure plasma spraying in controlled atmosphere up to two bar, ITSC'92, 1992, Orlando, Florida, USA, pp.69-74.

Google Scholar

[7] Smith, R. W., Lugscheider, E., Jokiel, P., Mueller, U., Merz, J., & Wilbert, M. Synthesis of composite materials by reactive plasma-spray processing. In Thermal Spray Coat.: Res., Design Appl., Proc. Natl. Spray Conf. (1993), pp.439-444.

Google Scholar

[8] A. Kobayashi. Formation of TiN coatings by gas tunnel type plasma reactive spraying, Surf. Coat. Technol. 132 (2000) 152–157.

DOI: 10.1016/s0257-8972(00)00725-8

Google Scholar

[9] T. Bacci, L. Bertamini, F. Ferrari, F.P. Galliano, E. Galvanetto. Reactive plasma spraying of titanium in nitrogen containing plasma gas, Mater. Sci. Eng. A A283 (2000) 189–195.

DOI: 10.1016/s0921-5093(00)00704-8

Google Scholar

[10] W. Feng, D. Yan, J. He, G. Zhang, Appl. Surf. Sci. 243 (2005) 204–213.

Google Scholar

[11] E. Galvanetto, F.P. Galliano, F. Borgiolia, U. Bardi, A. Lavacchi. XRD and XPS study on reactive plasma sprayed titanium/titanium nitride coatings, Thin Solid Films 384, 2001, 223-229.

DOI: 10.1016/s0040-6090(00)01871-x

Google Scholar

[12] P. Seyffarth, I.V. Krivtsun. Laser-Arc Processes and their Applications in Welding and Material Treatment. Welding and Allied Processes. Vol. 1, Taylor&Francis, (2002).

DOI: 10.1201/9781482264821

Google Scholar

[13] S.V. Petrov, I.N. Karp. Plazmennoe gazovozdushnoe napylenie, Kiev, Naukova dumka, 1993, 494 p.

Google Scholar

[14] Patent of Ukraine UA В23К10/00 Plazmotron dlya napylennya pokryttiv / Borisov Yu.S., Voynarovych S.G., Fomakin O.O., Yuschenko K.A. (Ukraine(UA); No. 2002076032; 19. 07. 2002 р., Published 16. 06. 2003, No. 6.

Google Scholar