Structural State Scale-Dependent Physical Characteristics and Endurance of Cermet Composite for Cutting Metal

Article Preview

Abstract:

A structural-phase state developed on the surface of TiC/Ni-Cr-Al alloy cermet under condition of superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface structural state multimodality on the temperature dependencies of friction and endurance of the cermet tool in cutting metal has been investigated. High-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools multiply ( by a factor of 6), to reduce friction on the account of precipitation of secondary 200 nm carbides in binder interlayers. It is possible to improve the cermet tool endurance for cutting metal by a factor of 10-12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

405-409

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bartolomé J.F., Beltrán J.I., Gutiérrez-González C.F., Pecharromán C., Muñoz M.C., Moya M.S. Acta Materia 2008; 56(14): 3358.

DOI: 10.1016/j.actamat.2008.03.021

Google Scholar

[2] Beltrán J.I., Gallego S., Cerdá J., Moya J.S., Muñoz M.C. J Phys Chem. B, 2004; 108: 15439.

Google Scholar

[3] Bannister M.K., Shercliff H.R., Bao G., Zoc F., Ashby M.F. Acta Metall. 1992; 40: 1531.

Google Scholar

[4] Psakhye S.G., Ovcharenko V.E., Knyazeva A.G., Shil'ko E.V. Phys Mesomechan. 2011; 14(6): 23. (in Rusian).

Google Scholar

[5] Raddatz O., Schneider G.A., Machens W., Vob H., Claussen N. J. Eur. Ceram. Soc. 2000; 20: 2261.

Google Scholar

[6] Nagendra N., Jayaram V.J. Mater Res. 2000; 15: 1131.

Google Scholar

[7] Ovcharenko V.E., Yu B.H., Psakhie S.G. J. Mater. Sci. Technol. 2005; 21(3): 429.

Google Scholar

[8] Yu B.H., Ovcharenko V.E., Psakhie S.G., Lapshin O.V. J. Mater. Sci. Technol. 2006; 22(4): 511.

Google Scholar

[9] Koval N.N., Devyatkov V.N., Schanin P.M., Tolkachev V.S., Vintizenko L.G. Dev. Technics Exper. 2005; 1: 135. (in Russian).

Google Scholar

[10] Ovcharenko V.E., Lapshin O.V. Metal. Sci. Heat. Treat. 2008; 5(635): 33. (in Rusian).

Google Scholar

[11] Bukrina N.V., Knyazeva A.G., Ovcharenko V.E. Phys. Chem. Mater. Treat. 2011; 1: 55. (in Russian).

Google Scholar

[12] Ovcharenko V.E., Bukrina N.V., Ivanov Y.F., Mokhovikov A.A., Wan J.C., Yu B.H. Proceedings of Tomsk Polytechnic University. 2011; 318(2): 110. (in Russian).

Google Scholar