[1]
A. S. Vereshchaka The efficiency of the cutting tool with wear-resistant coatings. Мoscow, Mashinostroenie, 1993. 336 p. (in Russian).
Google Scholar
[2]
V.P. Tabakov. Formation of wear-resistant ion-plasma coatings for cutting tools. Moscow.: Mashinostroenie, 2008. 310 p. (in Russian).
Google Scholar
[3]
M.F. Poletika. Contact load on the cutting tool surface. Moscow, Mashgiz, 1962, 150 p. (in Russian).
Google Scholar
[4]
D.E. Kirushin, T.G. Nasad. Stress-strain state in high-speed machining of titanium / Automation and control in machine and apparatus construction. SGTU, Saratov, 2006. Pp. 101-105. (in Russian).
Google Scholar
[5]
A. A. Vereshchaka, A. S. Vereshchaka, O. Mgaloblishvili, M. N. Morgan, A. D. Batako. Nano-scale multilayered-composite coatings for the cutting tools. International Journal of Advanced Manufacturing Technology. V. 72, Is. 1-4. 2014. P. 303-317.
DOI: 10.1007/s00170-014-5673-2
Google Scholar
[6]
A. A. Vereschaka, M. A. Volosova, S. N. Grigoriev, A. S. Vereschaka. Development of wear-resistant complex for high-speed steel tool when using process of combined cathodic vacuum arc deposition. Procedia CIRP 9 (2013) Elsevier B.V. pp.8-12.
DOI: 10.1016/j.procir.2013.06.159
Google Scholar
[7]
Vereschaka Alexey . Development of assisted filtered cathodic vacuum arc deposition of nano-dispersed multi-layered composite coatings on cutting tools. Key Engineering Materials Vol. 581 (2014) pp.62-67.
DOI: 10.4028/www.scientific.net/kem.581.62
Google Scholar
[8]
A.S. Vereschaka, S.N. Grigoriev, E.S. Sotova, A.A. Vereschaka Improving the efficiency of the cutting tools made of mixed ceramics by applying modifying nano-scale multilayered coatings Advanced Materials Research. – 2013. – V. 712-715. – P. 391-394.
DOI: 10.4028/www.scientific.net/amr.712-715.391
Google Scholar
[9]
A.S. Vereschaka, S.N. Grigoriev, V.P. Tabakov, E.S. Sotova, A.A. Vereschaka, M. Yu. Kulikov. Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings. Key Engineering Materials. 2014. V. 581. P. 68-73.
DOI: 10.4028/www.scientific.net/kem.581.68
Google Scholar
[10]
A. A. Vereschaka, A. S. Vereschaka, S. N. Grigoriev, D.V. Sladkov. Nano-Scale Multi-Layered Coatings for Cutting Tools Generated Using Assisted Filtered Cathodic-Vacuum-Arc Deposition (AFCVAD). Applied Mechanics and Materials Vols. 325-326 (2013).
DOI: 10.4028/www.scientific.net/amm.325-326.1454
Google Scholar
[11]
A.A. Vereschaka, A.S. Vereschaka, A.I. Anikeev Carbide Tools with Nano-Dispersed Coating for High-Performance Cutting of Hard-To-Cut Materials. Advanced Materials Research. 2014. V. 871. P. 164-170.
DOI: 10.4028/www.scientific.net/amr.871.164
Google Scholar
[12]
X.T. Zeng, S. Zhang, C.Q. Sun, Y.C. Liu. Nanometric-layered CrN/TiN thin films mechanical strength and thermal stability. Thin Solid Films, 424 (2003), p.99.
DOI: 10.1016/s0040-6090(02)00921-5
Google Scholar
[13]
Z. Zhou, W. M. Rainforth, Q. Luo, Hovsepian, Papken, J. J. Ojeda, and M. E. Romero-Gonzalez. Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures. Acta Materialia, (2010), 58, 2912-2925.
DOI: 10.1016/j.actamat.2010.01.020
Google Scholar
[14]
B.Y. Mokritskii, A.V. Kirichek, A.M. Shpilev, D.A. Pustovalov, P.A. Sablin. Acoustic assessment of tool quality. (2013) Russian Engineering Research, 33 (2), pp.74-78.
DOI: 10.3103/s1068798x13020111
Google Scholar
[15]
B. Ya. Mokritskii. Tool Materials for Chemical Machine Building. (2014) Chemical and Petroleum Engineering, 49 (9-10), pp.639-640.
DOI: 10.1007/s10556-014-9810-4
Google Scholar
[16]
D.A. Pustovalov, B.Y. Mokritskii, S.A. Ogilko, I.V. Lavrukhin, K.O. Belyanin. Pendulum sclerometer for evaluating material corrosion resistance. (2013) Chemical and Petroleum Engineering, 48 (11-12), pp.688-692.
DOI: 10.1007/s10556-013-9681-0
Google Scholar