Data Processing in Bifurcation Analysis of Maps with Time-Delays in the Frequency Domain

Article Preview

Abstract:

A unified frequency-domain approach to analyze the NS (Neimark-Sacker) bifurcations and the period-doubling bifurcations of nonlinear maps with time-delays in the linear feed-forward term is presented. The technique relies on the HBA (harmonic balance approximation, a very important method in data processing ) and feedback systems theory. The expressions of the bifurcation solution and the stability are derived.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

634-637

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Moiola and G. Chen: Int J Bifurcation and Chaos, 3(1993), p.843.

Google Scholar

[2] J.L. Moiola and G. Chen: Hopf Bifurcation Analysis: A Frequency Domain Approach. (World Scientific, Singapore 1996).

Google Scholar

[3] D.W. BERNS, J.L. MOIOLA and G. CHEN. IEEE Trans Circuits Syst I, 45(1998), p.759.

Google Scholar

[4] G.R. ITOVICH, J.L. MOIOLA. Journal of Sound and Vibration. 322(2009), p.358.

Google Scholar

[5] M.B. D'AMICO, J.L. MOIOLA, E.E. PAOLINI. Dyn Contin Discrete Impuls Syst Ser B Appl Algorithms. 10(2003), p.781.

Google Scholar

[6] M.B. D'AMICO, J.L. MOIOLA and E.E. PAOLINI. IEEE Trans Circuits Syst I. 49(2002), p.281.

Google Scholar

[7] M.B. D'AMICO, J.L. MOIOLA and E.E. PAOLINI. Latin American Applied Research. 33(2003), p.413.

Google Scholar

[8] L. Zeng, Y. Zhao, W. Sun and X.J. Zong. Acta Universitatis SunYatseni. 45(2006), p.16.

Google Scholar

[9] A.I. MEES and L.O. CHUA. IEEE Trans Circuits Syst. 26(1979), p.235.

Google Scholar

[10] D.G. ARONSON, M.A. CHORY, G.R. Hall and R.P. MCGEHEE. Comm Math Phys. 83(1982), p.303.

Google Scholar

[11] B.B. PECKHAM and I.G. KEVREKIDIS. SIAM J Math Anal. 22(1991), p.1552.

Google Scholar