[1]
M. R. Jolly, J. D. Carlson, and B. C. Mu, A model of the behaviour of magnetorheological materials, Vol. 5 (1996), p.607–614.
Google Scholar
[2]
M. Kallio, The elastic and damping properties The elastic and damping properties. (VTT Publications, 2005).
Google Scholar
[3]
L. Chen, X. L. Gong, and W. H. Li, Effect of carbon black on the mechanical performances of magnetorheological elastomers, Polym. Test., Vol. 27 (2008), no. 3, p.340–345.
DOI: 10.1016/j.polymertesting.2007.12.003
Google Scholar
[4]
A. Boczkowska and S. Awietjan, Microstructure and Properties of Magnetorheological Elastomers, (2012).
Google Scholar
[5]
B. X. Ju, M. Yu, J. Fu, Q. Yang, X. Q. Liu, and X. Zheng, A novel porous magnetorheological elastomer: preparation and evaluation, Smart Mater. Struct., Vol. 21 (2012), no. 3, p.035001.
DOI: 10.1088/0964-1726/21/3/035001
Google Scholar
[6]
E. A. and G. B. C. Ruddy, A review of Magnetorheological Elastomers: Properties and Applications, (2007).
Google Scholar
[7]
W. Li and X. Zhang, Research and Applications of MR Elastomers, Recent Patents Mech. Eng., Vol. 1 (2008), no. 3, p.161–166.
Google Scholar
[8]
M. Yu, B. Ju, J. Fu, X. Liu, and Q. Yang, Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers, J. Magn. Magn. Mater., Vol. 324 (2012), no. 13, p.2147–2152.
DOI: 10.1016/j.jmmm.2012.02.033
Google Scholar
[9]
R. Ismail, A. Ibrahim, and H. A. Hamid, A Review of Magnetorheological Elastomers : Characterization of Properties for Seismic Protection, Vol (2014).
Google Scholar
[10]
B. X. Ju, M. Yu, J. Fu, X. Zheng, and Q. Yang, Study on the properties of porous magnetorheological elastomers under shock effect, J. Phys. Conf. Ser., Vol. 412 (2013), p.012039.
DOI: 10.1088/1742-6596/412/1/012039
Google Scholar
[11]
Y. Wang, Y. Hu, X. Gong, W. Jiang, P. Zhang, and Z. Chen, Preparation and properties of magnetorheological elastomers based on silicon rubber/polystyrene blend matrix, J. Appl. Polym. Sci., Vol. 103 (2007), no. 5, p.3143–3149.
DOI: 10.1002/app.24598
Google Scholar
[12]
H. X. Deng and X. L. Gong, Adaptive Tuned Vibration Absorber based on Magnetorheological Elastomer, J. Intell. Mater. Syst. Struct., Vol. 18 (2007), no. 12, p.1205–1210.
DOI: 10.1177/1045389x07083128
Google Scholar
[13]
H. Deng and X. Gong, Application of magnetorheological elastomer to vibration absorber, Commun. Nonlinear Sci. Numer. Simul., Vol. 13 (2008), no. 9, p.1938–(1947).
Google Scholar
[14]
L. Chen, Damping of Magnetorheological Elastomers, (2008), p.0–5.
Google Scholar
[15]
S. -H. Eem, H. -J. Jung, and J. -H. Koo, Application of MR Elastomers for Improving Seismic Protection of Base-Isolated Structures, IEEE Trans. Magn., Vol. 47 (2011), no. 10, p.2901–2904.
DOI: 10.1109/tmag.2011.2156771
Google Scholar
[16]
S. H. Eem, H. J. Jung, and J. H. Koo, Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation, Smart Mater. Struct., Vol. 22 (2013), no. 5, p.055003.
DOI: 10.1088/0964-1726/22/5/055003
Google Scholar
[17]
Y. Li, J. Li, T. Tian, and W. Li, A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control, Smart Mater. Struct., Vol. 22 (2013), no. 9, p.095020.
DOI: 10.1088/0964-1726/22/9/095020
Google Scholar
[18]
Y. Li, J. Li, W. Li, and B. Samali, Development and characterization of a magnetorheological elastomer based adaptive seismic isolator, Smart Mater. Struct., vol. 22 (2013), no. 3, p.035005.
DOI: 10.1088/0964-1726/22/3/035005
Google Scholar
[19]
L. Chen, X. Gong, W. Jiang, J. Yao, H. Deng, and W. Li, Investigation on magnetorheological elastomers based on natural rubber, J. Mater. Sci., Vol. 42 (2007), no. 14, p.5483–5489.
DOI: 10.1007/s10853-006-0975-x
Google Scholar
[20]
X. Lu, X. Qiao, H. Watanabe, X. Gong, T. Yang, W. Li, K. Sun, M. Li, K. Yang, H. Xie, Q. Yin, D. Wang, and X. Chen, Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS), Rheol. Acta, Vol. 51 (2011).
DOI: 10.1007/s00397-011-0582-x
Google Scholar
[21]
J. Zhu, Z. Xu, and Y. Guo, Experimental and Modeling Study on Magnetorheological Elastomers with Different Matrices, Vol. 25 (2014), no. 11, p.1762–1771.
Google Scholar
[22]
J. D. Carlson and M. R. Jolly, MR fluid, foam and elastomer devices, Mechatronics, Vol. 10 (2000), no. 4–5. p.555–569.
DOI: 10.1016/s0957-4158(99)00064-1
Google Scholar
[23]
L. C. Davis, Model of magnetorheological elastomers., J. Appl. Phys., Vol. 85 (1999), no. 6, p.3348.
Google Scholar
[24]
M. Lokander and B. Stenberg, Performance of isotropic magnetorheological rubber materials, Polym. Test., vol. 22 (2003), p.245–251.
DOI: 10.1016/s0142-9418(02)00043-0
Google Scholar
[25]
M. Lokander, T. Reitberger, and B. Stenberg, Oxidation of natural rubber-based magnetorheological elastomers, Polym. Degrad. Stab., Vol. 86 (2004), no. 3, p.467–471.
DOI: 10.1016/j.polymdegradstab.2004.05.019
Google Scholar
[26]
J. -H. Koo, F. Khan, D. -D. Jang, and H. -J. Jung, Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings, Smart Mater. Struct., Vol. 19 (2010), p.117002.
DOI: 10.1088/0964-1726/19/11/117002
Google Scholar
[27]
J. Fu, M. Yu, X. M. Dong, and L. X. Zhu, Magnetorheological elastomer and its application on impact buffer, J. Phys. Conf. Ser., Vol. 412(2013), p.012032.
DOI: 10.1088/1742-6596/412/1/012032
Google Scholar
[28]
Y. Shen, M. F. Golnaraghi, and G. R. Heppler, Experimental Research and Modeling of Magnetorheological Elastomers, J. Intell. Mater. Syst. Struct., Vol. 15 (2014), p.27–35.
Google Scholar
[29]
M. Lokander and B. Stenberg, Improving the magnetorheological effect in isotropic magnetorheological rubber materials, Polym. Test., Vol. 22 (2003), p.677–680.
DOI: 10.1016/s0142-9418(02)00175-7
Google Scholar
[30]
A. Samsuri, An Introduction to Polymer Science and Rubber Technology. (Pusat Penerbitan Universiti, Universiti Teknologi MARA, 2009).
Google Scholar