Magnetorheological Elastomers: A Review

Article Preview

Abstract:

This present paper reviews on the material compositions of Magnetorheological elastomer (MRE) as presented by researchers. As the article review, this paper much focuses on the selection of the material in the MRE ingredients. MRE has been known as a new kind of smart material over past decades. MREs offer innovative solutions for various applications in the engineering field since the rheological properties of MREs can be controlled by an external magnetic field. The characteristic responses of MRE are influenced by many factors such its elastomer matrix, the size, distribution, composition, percentage volume of filler particles and so on.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-259

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. R. Jolly, J. D. Carlson, and B. C. Mu, A model of the behaviour of magnetorheological materials, Vol. 5 (1996), p.607–614.

Google Scholar

[2] M. Kallio, The elastic and damping properties The elastic and damping properties. (VTT Publications, 2005).

Google Scholar

[3] L. Chen, X. L. Gong, and W. H. Li, Effect of carbon black on the mechanical performances of magnetorheological elastomers, Polym. Test., Vol. 27 (2008), no. 3, p.340–345.

DOI: 10.1016/j.polymertesting.2007.12.003

Google Scholar

[4] A. Boczkowska and S. Awietjan, Microstructure and Properties of Magnetorheological Elastomers, (2012).

Google Scholar

[5] B. X. Ju, M. Yu, J. Fu, Q. Yang, X. Q. Liu, and X. Zheng, A novel porous magnetorheological elastomer: preparation and evaluation, Smart Mater. Struct., Vol. 21 (2012), no. 3, p.035001.

DOI: 10.1088/0964-1726/21/3/035001

Google Scholar

[6] E. A. and G. B. C. Ruddy, A review of Magnetorheological Elastomers: Properties and Applications, (2007).

Google Scholar

[7] W. Li and X. Zhang, Research and Applications of MR Elastomers, Recent Patents Mech. Eng., Vol. 1 (2008), no. 3, p.161–166.

Google Scholar

[8] M. Yu, B. Ju, J. Fu, X. Liu, and Q. Yang, Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers, J. Magn. Magn. Mater., Vol. 324 (2012), no. 13, p.2147–2152.

DOI: 10.1016/j.jmmm.2012.02.033

Google Scholar

[9] R. Ismail, A. Ibrahim, and H. A. Hamid, A Review of Magnetorheological Elastomers : Characterization of Properties for Seismic Protection, Vol (2014).

Google Scholar

[10] B. X. Ju, M. Yu, J. Fu, X. Zheng, and Q. Yang, Study on the properties of porous magnetorheological elastomers under shock effect, J. Phys. Conf. Ser., Vol. 412 (2013), p.012039.

DOI: 10.1088/1742-6596/412/1/012039

Google Scholar

[11] Y. Wang, Y. Hu, X. Gong, W. Jiang, P. Zhang, and Z. Chen, Preparation and properties of magnetorheological elastomers based on silicon rubber/polystyrene blend matrix, J. Appl. Polym. Sci., Vol. 103 (2007), no. 5, p.3143–3149.

DOI: 10.1002/app.24598

Google Scholar

[12] H. X. Deng and X. L. Gong, Adaptive Tuned Vibration Absorber based on Magnetorheological Elastomer, J. Intell. Mater. Syst. Struct., Vol. 18 (2007), no. 12, p.1205–1210.

DOI: 10.1177/1045389x07083128

Google Scholar

[13] H. Deng and X. Gong, Application of magnetorheological elastomer to vibration absorber, Commun. Nonlinear Sci. Numer. Simul., Vol. 13 (2008), no. 9, p.1938–(1947).

Google Scholar

[14] L. Chen, Damping of Magnetorheological Elastomers, (2008), p.0–5.

Google Scholar

[15] S. -H. Eem, H. -J. Jung, and J. -H. Koo, Application of MR Elastomers for Improving Seismic Protection of Base-Isolated Structures, IEEE Trans. Magn., Vol. 47 (2011), no. 10, p.2901–2904.

DOI: 10.1109/tmag.2011.2156771

Google Scholar

[16] S. H. Eem, H. J. Jung, and J. H. Koo, Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation, Smart Mater. Struct., Vol. 22 (2013), no. 5, p.055003.

DOI: 10.1088/0964-1726/22/5/055003

Google Scholar

[17] Y. Li, J. Li, T. Tian, and W. Li, A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control, Smart Mater. Struct., Vol. 22 (2013), no. 9, p.095020.

DOI: 10.1088/0964-1726/22/9/095020

Google Scholar

[18] Y. Li, J. Li, W. Li, and B. Samali, Development and characterization of a magnetorheological elastomer based adaptive seismic isolator, Smart Mater. Struct., vol. 22 (2013), no. 3, p.035005.

DOI: 10.1088/0964-1726/22/3/035005

Google Scholar

[19] L. Chen, X. Gong, W. Jiang, J. Yao, H. Deng, and W. Li, Investigation on magnetorheological elastomers based on natural rubber, J. Mater. Sci., Vol. 42 (2007), no. 14, p.5483–5489.

DOI: 10.1007/s10853-006-0975-x

Google Scholar

[20] X. Lu, X. Qiao, H. Watanabe, X. Gong, T. Yang, W. Li, K. Sun, M. Li, K. Yang, H. Xie, Q. Yin, D. Wang, and X. Chen, Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS), Rheol. Acta, Vol. 51 (2011).

DOI: 10.1007/s00397-011-0582-x

Google Scholar

[21] J. Zhu, Z. Xu, and Y. Guo, Experimental and Modeling Study on Magnetorheological Elastomers with Different Matrices, Vol. 25 (2014), no. 11, p.1762–1771.

Google Scholar

[22] J. D. Carlson and M. R. Jolly, MR fluid, foam and elastomer devices, Mechatronics, Vol. 10 (2000), no. 4–5. p.555–569.

DOI: 10.1016/s0957-4158(99)00064-1

Google Scholar

[23] L. C. Davis, Model of magnetorheological elastomers., J. Appl. Phys., Vol. 85 (1999), no. 6, p.3348.

Google Scholar

[24] M. Lokander and B. Stenberg, Performance of isotropic magnetorheological rubber materials, Polym. Test., vol. 22 (2003), p.245–251.

DOI: 10.1016/s0142-9418(02)00043-0

Google Scholar

[25] M. Lokander, T. Reitberger, and B. Stenberg, Oxidation of natural rubber-based magnetorheological elastomers, Polym. Degrad. Stab., Vol. 86 (2004), no. 3, p.467–471.

DOI: 10.1016/j.polymdegradstab.2004.05.019

Google Scholar

[26] J. -H. Koo, F. Khan, D. -D. Jang, and H. -J. Jung, Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings, Smart Mater. Struct., Vol. 19 (2010), p.117002.

DOI: 10.1088/0964-1726/19/11/117002

Google Scholar

[27] J. Fu, M. Yu, X. M. Dong, and L. X. Zhu, Magnetorheological elastomer and its application on impact buffer, J. Phys. Conf. Ser., Vol. 412(2013), p.012032.

DOI: 10.1088/1742-6596/412/1/012032

Google Scholar

[28] Y. Shen, M. F. Golnaraghi, and G. R. Heppler, Experimental Research and Modeling of Magnetorheological Elastomers, J. Intell. Mater. Syst. Struct., Vol. 15 (2014), p.27–35.

Google Scholar

[29] M. Lokander and B. Stenberg, Improving the magnetorheological effect in isotropic magnetorheological rubber materials, Polym. Test., Vol. 22 (2003), p.677–680.

DOI: 10.1016/s0142-9418(02)00175-7

Google Scholar

[30] A. Samsuri, An Introduction to Polymer Science and Rubber Technology. (Pusat Penerbitan Universiti, Universiti Teknologi MARA, 2009).

Google Scholar