An Initial Study of the Effect of Minimum Quantity Lubricant of SiO2 Nanoparticle with PEG on Surface Roughness during Milling of Mild Steel

Article Preview

Abstract:

This paper study the effect of minimum quantity lubricant of SiO2 nanoparticle with surfactant, PEG on surface roughness during machining of mild steel. The application of conventional cutting fluid leads to techno-environmental issue such as environmental pollution. Nanolubricant consists of suspended nanoparticles in based fluid. Nanolubricant with surfactant creates stability of the particles in the base fluid. The results indicate the application of minimum quantity lubricant of nanolubricant with surfactant during machining process lead to minimum usage of cutting fluid and better surface roughness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

627-630

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Rahmati, A. A. D. Sarhan, and M. Sayuti, Investigating the optimum molybdenum disulfide ( MoS 2 ) nanolubrication parameters in CNC milling of AL6061-T6 alloy, p.1143–1155, (2014).

DOI: 10.1007/s00170-013-5334-x

Google Scholar

[2] S. Y. Sia, E. Z. Bassyony, and A. A. D. Sarhan, Development of SiO 2 nanolubrication system to be used in sliding bearings, (2014).

Google Scholar

[3] C. Mao, H. Zou, and X. Huang, The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication, p.1791–1799, (2013).

DOI: 10.1007/s00170-012-4143-y

Google Scholar

[4] M. Sayuti, A. a. D. Sarhan, and M. Hamdi, An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy, Int. J. Adv. Manuf. Technol., Oct. (2012).

DOI: 10.1007/s00170-012-4527-z

Google Scholar

[5] M. Sayuti, A. A. D. Sarhan, and T. Tanaka, Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system, p.1493–1500, (2013).

DOI: 10.1007/s00170-012-4273-2

Google Scholar

[6] W. Yu and H. Xie, A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, J. Nanomater., vol. 2012, p.1–17, (2012).

Google Scholar

[7] T. Otanicar, J. Hoyt, M. Fahar, X. Jiang, and R. a. Taylor, Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions, J. Nanoparticle Res., vol. 15, no. 11, p.2039, Oct. (2013).

DOI: 10.1007/s11051-013-2039-x

Google Scholar

[8] M. K. Moraveji, M. Golkaram, and R. Davarnejad, Effect of CuO nanoparticle on dissolution of methane in water, J. Mol. Liq., vol. 180, p.45–50, Apr. (2013).

DOI: 10.1016/j.molliq.2012.12.014

Google Scholar

[9] A. Ghadimi and I. H. Metselaar, The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid, Exp. Therm. Fluid Sci., vol. 51, p.1–9, Nov. (2013).

DOI: 10.1016/j.expthermflusci.2013.06.001

Google Scholar

[10] C. Mao, H. Zou, X. Zhou, Y. Huang, H. Gan, and Z. Zhou, Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding, Int. J. Adv. Manuf. Technol., Feb. (2014).

DOI: 10.1007/s00170-014-5642-9

Google Scholar