Stability Condition for Single-Relaxation Time Isothermal Lattice Boltzmann Formulation

Article Preview

Abstract:

In this present research, the Lattice Boltzmann method has been used to determine the stability condition of the single relaxation time. The range of Reynolds number is 100,400 and 1000. Meanwhile, the range of mesh size is varying between 31 to 251. The results show that the increase in both mesh size and Reynolds number give an effect on deviation percentages. The deviation percentages for all mesh and Reynolds number also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

667-670

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-Gas Automata for the Navier-Stokes Equation, Phys. Rev. Lett. 56 (1986) 1505–1508.

DOI: 10.1103/physrevlett.56.1505

Google Scholar

[2] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J. P. Rivet, Lattice Gas Hydrodynamics in Two and Three Dimensions, Complex Systems. 1 (1987) 649–707.

Google Scholar

[3] S. Wolfram, Cellular Automaton Fluids 1: Basic Theory, J. of Statistical Physics. 45 (1986) 471–526.

DOI: 10.1007/bf01021083

Google Scholar

[4] G. McNamara and G. Zanetti, Use of the Boltzmann Equation to Simulate Lattice-Gas Automata, Phys. Rev. Lett. 61 (1988) 2332–2335.

DOI: 10.1103/physrevlett.61.2332

Google Scholar

[5] F. J. Higuera and J. Jimenez, Boltzmann Approach to Lattice-Gas Simulations, Europhysics Lett. 9 (1989) 663–668.

DOI: 10.1209/0295-5075/9/7/009

Google Scholar

[6] P. Bhatnagar, E. Gross, M. Krook, A Model for Collision Processes in Gases, I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94 (1954) 511–525.

DOI: 10.1103/physrev.94.511

Google Scholar

[7] H. Chen, S. Chen, W.H. Matthaeus, Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A 45 (8) (1992) R5339–R5342.

DOI: 10.1103/physreva.45.r5339

Google Scholar

[8] Y.H. Qian, D. D'Humières, P. Lallemand, Lattice BGK models for Navier– Stokes equation, Europhys. Lett. 17 (1992) 479–484.

DOI: 10.1209/0295-5075/17/6/001

Google Scholar

[9] U. Ghia, K.N. Ghia, C.T. nShin, High-Reynolds number solutions for incompressible flow using the Navier–Stokes equations and a multigrid method, J Comput Phys. 48 (1982) 387–411.

DOI: 10.1016/0021-9991(82)90058-4

Google Scholar