[1]
U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-Gas Automata for the Navier-Stokes Equation, Phys. Rev. Lett. 56 (1986) 1505–1508.
DOI: 10.1103/physrevlett.56.1505
Google Scholar
[2]
U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J. P. Rivet, Lattice Gas Hydrodynamics in Two and Three Dimensions, Complex Systems. 1 (1987) 649–707.
Google Scholar
[3]
S. Wolfram, Cellular Automaton Fluids 1: Basic Theory, J. of Statistical Physics. 45 (1986) 471–526.
DOI: 10.1007/bf01021083
Google Scholar
[4]
G. McNamara and G. Zanetti, Use of the Boltzmann Equation to Simulate Lattice-Gas Automata, Phys. Rev. Lett. 61 (1988) 2332–2335.
DOI: 10.1103/physrevlett.61.2332
Google Scholar
[5]
F. J. Higuera and J. Jimenez, Boltzmann Approach to Lattice-Gas Simulations, Europhysics Lett. 9 (1989) 663–668.
DOI: 10.1209/0295-5075/9/7/009
Google Scholar
[6]
P. Bhatnagar, E. Gross, M. Krook, A Model for Collision Processes in Gases, I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94 (1954) 511–525.
DOI: 10.1103/physrev.94.511
Google Scholar
[7]
H. Chen, S. Chen, W.H. Matthaeus, Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A 45 (8) (1992) R5339–R5342.
DOI: 10.1103/physreva.45.r5339
Google Scholar
[8]
Y.H. Qian, D. D'Humières, P. Lallemand, Lattice BGK models for Navier– Stokes equation, Europhys. Lett. 17 (1992) 479–484.
DOI: 10.1209/0295-5075/17/6/001
Google Scholar
[9]
U. Ghia, K.N. Ghia, C.T. nShin, High-Reynolds number solutions for incompressible flow using the Navier–Stokes equations and a multigrid method, J Comput Phys. 48 (1982) 387–411.
DOI: 10.1016/0021-9991(82)90058-4
Google Scholar