[1]
Chin L. Y., L. K. Thomas, J. E. Sylte and R. G. Pierson: Iterative Coupled Analysis of Geomechanics and Fluid Flow for Rock Compaction in Reservoir Simulation, Oil & Gas Science and Technology, 57, (2002), Issue no. 5, 485-497.
DOI: 10.2516/ogst:2002032
Google Scholar
[2]
Du J., R. C. K. Wong: Development of a Coupled Geomechanics-Thermal Reservoir simulator Using Finite Element Method, Canadian International Petroleum Conference, Calgary, Alberta, (2005).
DOI: 10.2118/2005-027
Google Scholar
[3]
Espinoza, C.E., INTEVEP, S.A.: A New Formulation for Numerical Simulation of Compaction, Sensitivity Studies for Steam Injection, SPE Reservoir Simulation Symposium, San Francisco, California, (1983).
DOI: 10.2118/12246-ms
Google Scholar
[4]
Bataee, M., & Irawan, S. (2014). Review of Geomechanical Application in Reservoir Modeling. Journal of Applied Sciences, 14(10).
DOI: 10.3923/jas.2014.981.990
Google Scholar
[5]
M. Bataee, S. Irawan, (2014), The Effects of Geomechanics on the WAG Injection Model, Offshore Technology Conference-Asia, 25-28 March, Kuala Lumpur, Malaysia.
DOI: 10.2118/24706-ms
Google Scholar
[6]
Lewis R. W., C. E. Majorana, B. A. Schrefler.: A coupled finite element model for the consolidation of nonisothermal elastoplastic porous media, Journal of Transport in Porous Media, 1, (1986), Issue no. 2, 155-178.
DOI: 10.1007/bf00714690
Google Scholar
[7]
Lewis R. W., P. J. Roberts, B. A. Schrefler.: Finite element modelling of two-phase heat and fluid flow in deforming porous media, J. of Transport in Porous Media, 4, (1989), Issue no. 4, 319-334.
DOI: 10.1007/bf00165778
Google Scholar
[8]
Lewis R. W., B. A. Schrefler.: The finite element method in the static and dynamic deformation and consolidation of porous media, ISBN: 978-0-471-92809-6, 508 pages, (1998).
DOI: 10.1002/(sici)1099-1484(200001)5:1<85::aid-cfm94>3.0.co;2-8
Google Scholar
[9]
Pao W. K. S., R. W. Lewis, I. Masters.: A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation, International Journal for Numerical and Analytical Methods in Geomechanics, 25, (2001), Issue no. 12, 1229–1256.
DOI: 10.1002/nag.174
Google Scholar
[10]
Yin, S., M.B. Dusseault, and L. Rothenburg: Multiphase poroelastic modeling in semi-space for deformable reservoirs, Journal of Petroleum Science and Engineering, 64, (2009), 45-54.
DOI: 10.1016/j.petrol.2008.12.003
Google Scholar
[11]
Yin, S., M.B. Dusseault, and L. Rothenburg: Thermal reservoir modeling in petroleum geomechanics, International journal for numerical and analytical methods in geomechanics, 33, (2009), Issue no. 4, 449-485.
DOI: 10.1002/nag.723
Google Scholar
[12]
S. Mohseni, M. Bataee., (2011). Application of Artificial Intelligent Systems in ROP Optimization: a Case Study, SPE Middle East Unconventional Gas Conference and Exhibition, 31 January-2 February, Muscat, Oman.
DOI: 10.2118/140029-ms
Google Scholar
[13]
S. Edalatkhah, et al., (2010).
Google Scholar
[14]
M. Bataee, S. Irawan, (2014), Artificial Neural Network Model for Prediction of Drilling Rate of Penetration and Optimization of Parameters, Journal of the Japan Petroleum Institute 57(2), 65-70, 2014-03.
DOI: 10.1627/jpi.57.65
Google Scholar
[15]
Ali Ghalambor, et. al., (2010), Neural Networks in BHCP Prediction Performed Much Better Than Mechanistic Models, International Oil and Gas Conference and Exhibition in China, 8-10 June, Beijing, China.
DOI: 10.2118/130095-ms
Google Scholar
[16]
M. Bataee., M. Kamyab., (2010).
Google Scholar
[17]
M.R. Zare, et al., (2012), Production Optimization Using Different Scenarios of Gas Lift and ESP Installation,., World Applied Sciences Journal, 17 (4), 524-531.
Google Scholar