[1]
S.N. Fadeev, M.G. Golkovski, A.I. Korchagin, N.K. Kuksanov, A.V. Lavruhin, S.E. Petrov, R.A. Salimov, A.F. Vaisman, Technological applications of BINP industrial electron accelerators with focused beam extracted into atmosphere, Radiat. Phys. Chem. 57 (2000).
DOI: 10.1016/s0969-806x(99)00499-5
Google Scholar
[2]
M.G. Golkovsky, Hardening and surfacing relativistic electron beam outside the vacuum. Technological capabilities of the method, Saarbrȕcken: LAPLAMBERT Academic Publishing, 2013. (in Russian).
Google Scholar
[3]
I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva, Structure of surface layers produced by non-vacuum electron beam boriding, Applied Surf. Sci. 284 (2013) 472–481.
DOI: 10.1016/j.apsusc.2013.07.121
Google Scholar
[4]
I.A. Bataev, A.A. Bataev, M.G. Golkovsky, A.Y. Teplykh, V.G. Burov, S.V. Veselov, Non-vacuum electron-beam boriding of low-carbon steel, Surf. Coat. Technol. 207 (2012) 245-253.
DOI: 10.1016/j.surfcoat.2012.06.081
Google Scholar
[5]
I.A. Bataev, M.G. Golkovskii, A.A. Bataev, A.A. Losinskaya, R.A. Dostovalov, A.I. Popelyukh, E.A. Drobyaz, Surface hardening of steels with carbon by non-vacuum electron-beam processing, Surf. Coat. Technol. 242 (2014) 164-169.
DOI: 10.1016/j.surfcoat.2014.01.038
Google Scholar
[6]
M.G. Golkovski, I.A. Bataev, A. A Bataev, A.A. Ruktuev, T.V. Zhuravina, N.K. Kuksanov, R.A. Salimov, V.A. Bataev, Atmospheric electron-beam surface alloying of titanium with tantalum, Mater. Sci. Eng., A 578 (2013) 310-317.
DOI: 10.1016/j.msea.2013.04.103
Google Scholar
[7]
M.G. Golkovsky, T.V. Zhuravina, I.A. Bataev, A.A. Bataev, S.V. Veselov, V.A. Bataev, E.A. Prikhodko, Cladding of tantalum and niobium on titanium by an electron beam injected in the atmosphere, Adv. Mater. Res. 314-316 (2011) 23-27.
DOI: 10.4028/www.scientific.net/amr.314-316.23
Google Scholar
[8]
E. Yun, Y.C. Kim, S. Lee, N.J. Kim, Correlation of microstructure with hardness and wear resistance in (TiC, SiC)/stainless steel surface composites fabricated by high-energy electron-beam irradiation. Metall. Mater. Trans. A 35 (2004) 1029-1038.
DOI: 10.1007/s11661-004-0029-4
Google Scholar
[9]
D. Nam, K. Lee, S. Lee, Correlation of microstructure with hardness and wear resistance of carbide-reinforced ferrous surface composites fabricated by high-energy electron-beam irradiation, Metall. Mater. Trans. A 39 (2008) 2626-2634.
DOI: 10.1007/s11661-008-9641-z
Google Scholar
[10]
D. Nam, J. Do, S. Lee, Improvement of hardness and fracture toughness of surface composites fabricated by high-energy electron-beam irradiation with Fe-alloy powders and VC powders, Scripta Mater. 60 (2009) 695-698.
DOI: 10.1016/j.scriptamat.2008.12.055
Google Scholar
[11]
D.H. Nam, J. Do, S. Lee, Correlation of microstructure, hardness, and fracture toughness of Fe-based surface composites fabricated by high-energy electron beam irradiation with Fe-based metamorphic alloy powders and VC powders, Metall. Mater. Trans. A 40 (2009).
DOI: 10.1007/s11661-009-0004-1
Google Scholar
[12]
J. Lee, K. Euh, S. Lee, N.J. Kim, Microstructural analysis of TiC reinforced ferrous surface composites processed by accelerated electron beam irradiation, Curr Appl Phys. 1 (2001) 467-471.
DOI: 10.1016/s1567-1739(01)00059-1
Google Scholar
[13]
I.M. Poletika, M.G. Golkovsky, M.D. Borisov, R.A. Salimov, M.V. Perovskaia, Fusion of hardening coatings in relaivistic electron beam, Fizicheskaja mezomehanika 8 (SpecV. ) (2005) 129-132. (in Russian).
Google Scholar
[14]
I.M. Poletika, M.G. Golkovskii, M.V. Perovskaya, T.A. Krylova, R.A. Salimov, Formation of dual-purpose by electron-beam surfacing outside vacuum, Fizicheskaja mezomehanika 9 (SpecV. ) (2006) 177-180. (in Russian).
Google Scholar
[15]
I.M. Poletika, Y.F. Ivanov, M.G. Golkovsky, M.V. Perovskaya, Structure and properties of the coatings produced by electron-beam welding, Fizika i himija obrabotki materialov 6 (2007) 48-56. (in Russian).
Google Scholar
[16]
J. Lee, K. Euh, J.C. Oh, S. Lee, Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation, Mater. Sci. Eng., A 323 (2002) 251-259.
DOI: 10.1016/s0921-5093(01)01378-8
Google Scholar
[17]
D.O. Mul, Surface hardening of structural steels vnevakuumnoy electron-beam welding mixture of vanadium and carbon, Materialy 51j Mezhdunarodnoj nauchnoj studencheskoj konferencii Student i nauchno-tehnicheskij progress,: novye materialy i tehnologii / Novosib. gos. un-t. Novosibirsk 2013, 51. (in Russian).
Google Scholar
[18]
D.O. Mul, D.S. Krivezhenko, D.B. Lazurenko, O.G. Lenivtseva, A.A. Chevakinskaya, Structure and Properties of Coatings Obtained by Electron-Beam Cladding of Ti+C and Ti+B4C Powder Mixtures on Steel Specimens at Air Atmosphere, Adv. Mater. Res. 1040 (2014).
DOI: 10.4028/www.scientific.net/amr.1040.778
Google Scholar
[19]
H.O. Pierson, Handbook of Refractory Carbides and Nitrides. Properties, Characteristics, Processing and Applications. Noyes publications Westwood, New Jersey, U.S.A., (1996).
Google Scholar