[1]
S.A.A. Akbari Mousavi, P. Farhadi Sartangi, Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite, Mater. Sci. Eng., A. 494 (2008) 329–336.
DOI: 10.1016/j.msea.2008.04.032
Google Scholar
[2]
E.A. Prikhodko, I.A. Bataev, A.A. Bataev, V.S. Lozhkin, V.I. Mali, M.A. Esikov, The effect of heat treatment on the microstructure and mechanical properties of multilayered composites welded by explosion, Adv. Mater. Res. 535-537 (2012) 213-234.
DOI: 10.4028/www.scientific.net/amr.535-537.231
Google Scholar
[3]
I.A. Bataev, A.A. Bataev, D.V. Pavlyukova, P.S. Yartsev, E.D. Golovin, V.I. Mali, Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, The Physics of Metals and Metallography. 10 (113) (2012) 947-956.
DOI: 10.1134/s0031918x12070022
Google Scholar
[4]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225–234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[5]
M. Honarpisheh, M. Asemabadi, M. Sedighi, Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer, Mater. Des. 37 (2012) 122–127.
DOI: 10.1016/j.matdes.2011.12.045
Google Scholar
[6]
C. Xia, Z. Jin, On the evolution of microstructure and diffusion path in the titanium-steel explosion weld interface during heat treatment, J. Less Common Met. 162 (1990) 315-322.
DOI: 10.1016/0022-5088(90)90347-m
Google Scholar
[7]
E.A. Prikhodko, I.A. Bataev, V.I. Mali, A.A. Nikulina, A.I. Popeluch, V.S. Lozhkin, Structura i ustalostnaya treschinostoikost' mnogosloinih compozitov, polushennih po tehnologii svarki vzrivom raznorodnih materialov, Deformaciya i razrusheniye materialov (in Russian). 3 (2013).
Google Scholar
[8]
I.D. Zakharenko, Svarka vzrivom, Nauka i tehnika, (1990).
Google Scholar
[9]
A. Chiba, M. Nishida, Y. Morizono, K. Imamura, Bonding characteristics and diffusion barrier effect of the TiC phase formed at the bonding interface in an explosively welded titanium/high-carbon steel clad, J. Phase Equilib. 16 (1995) 411-415.
DOI: 10.1007/bf02645348
Google Scholar
[10]
N. Kahraman, B. Gulenc, F. Findik, Joining of titanium/stainless steel by explosive welding and effect on interface, J. Mater. Process. Technol. 169 (2005) 127-133.
DOI: 10.1016/j.jmatprotec.2005.06.045
Google Scholar
[11]
F. Findik, Recent developments in explosive welding, Mater. Des. 32 (2011) 1081–1093.
Google Scholar
[12]
L.F. Trueb, Microstructural effects of heat treatment on the bond interface of explosively welded metals, Metall. Trans. 2 (1971) 145-153.
DOI: 10.1007/bf02662650
Google Scholar
[13]
Iu.N. Maliutina, V.I. Mali, I.A. Bataev, A.A. Bataev, M.A. Esikov, A.I. Smirnov, K.A. Skorokhod, Structure and microhardness of Cu-Ta joints produced by explosive welding, The Scientific World Journal. 2013 (2013) 1-7.
DOI: 10.1155/2013/256758
Google Scholar
[14]
V.I. Mali, I.A. Balaganskii, E.B. Makarova, A.I. Smirnov, I.A. Bataev, T.V. Zhuravina, Structure and mechanical properties of layered composite materials, consisting of pure titanium, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (in Russian). 2 (2011).
Google Scholar
[15]
H. Sabetghadam, A. Zarei Hanzaki, A. Araee, A. Hadian, Microstructural evaluation of 410 SS/Cu diffusion-bonded joint, J. Mater. Sci. Technol. 26 (2010) 163-169.
DOI: 10.1016/s1005-0302(10)60027-8
Google Scholar
[16]
N.F. Kazakov, Diffuzionnaya svarka metallov, Metallurgiya, (1976).
Google Scholar
[17]
J.R. Davis, Copper and copper alloys, ASM Handbook, (2001).
Google Scholar