[1]
A. Adak, M. Bandyopadhyay, A. Pal, Removal of anionic surfactant from wastewater by alumina: A case study. Colloids Surf. A: Physicochem. Eng. Aspects, 254 (2005) 165-171.
DOI: 10.1016/j.colsurfa.2004.12.004
Google Scholar
[2]
C.C. Ang, A.S. Abdul, Evaluation of an ultrafiltration method for surfactant recovery and reuse during in-situ washing of contaminated sites: Laboratory and field studies, J. Ground Water Monit. Remidiat., 14 (1994) 160-171.
DOI: 10.1111/j.1745-6592.1994.tb00477.x
Google Scholar
[3]
C. Garnier, T. Gorner, F. Villie´ras, L.J. Michot, Activated carbon surface heterogeneity seen by parallel probing by inverse liquid chromatography at the solid/liquid interface and by gas adsorption analysis at the solid/gas interface, Carbon, 45 (2007).
DOI: 10.1016/j.carbon.2006.10.004
Google Scholar
[4]
W. Chu, K.H. Chan, C.Y. Kwan, C.T. Jafvert, Acceleration and quenching of the photolysis of PCB in the presence of surfactant and humic materials, J. Environ. Sci. Technol., 39 (2005) 9211-9216.
DOI: 10.1021/es0511826
Google Scholar
[5]
C.K. Ahn, Y.M. Kim, S.H. Woo, J.M. Park, Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon, J. Chemosphere, 69 (2007) 1-8.
DOI: 10.1016/j.chemosphere.2007.06.018
Google Scholar
[6]
D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, J. Bioresource Tech., 98 (2007) 14-21.
DOI: 10.1016/j.biortech.2005.12.008
Google Scholar
[7]
D.E. Kile, C.T. Chiou, Water solubility enhancement of DDT and Trichlorobenzene by some surfactants below and above the critical micelle concentration, J. Environ. Sci. Tech., 23 (1989) 832-838.
DOI: 10.1021/es00065a012
Google Scholar
[8]
A.A. Attia, B.S. Girgis, N.A. Fathy, Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies, Dyes Pigments, 76 (2008) 282-289.
DOI: 10.1016/j.dyepig.2006.08.039
Google Scholar
[9]
Y. Hsu Ju, H.L. Huong, K. Novy Srihartati, W. Jen-Huo, A.E. Fazary, Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse, Carbohydrate Polymers, 83 (2011) 591-599.
DOI: 10.1016/j.carbpol.2010.08.022
Google Scholar
[10]
B. Karagozoglu, M. Tasdemir, E. Demirbas, M. Kobya, The adsorption of basic dye (Astrazon blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies, J. Hazardous Materials, 147 (2007).
DOI: 10.1016/j.jhazmat.2007.01.003
Google Scholar
[11]
B.H. Hameed, K.Y. Foo. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation, J. Biomass and Bioenergy, 35 (2011) 3257- 3261.
DOI: 10.1016/j.biombioe.2011.04.023
Google Scholar
[12]
M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4-activated rubber wood sawdust, J. Colloid Interface Science, 292 (2005) 354-362.
DOI: 10.1016/j.jcis.2005.05.087
Google Scholar
[13]
M. Dinesh, P. S Kunwar, Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from baggase - agricultural waste, J. Water Resource, 36 (2002) 2304.
DOI: 10.1016/s0043-1354(01)00447-x
Google Scholar
[14]
M. Carrier, G.A. Hardie, U. Uras, J. Gorgens, J.K. Knoetze, Production of char form vacuum pyrolysis of South African sugar cane bagasse and its characterization as activated carbon and biochar, J. Analytical and Applied Pyrolysis, 96 (2012).
DOI: 10.1016/j.jaap.2012.02.016
Google Scholar
[15]
I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamics studies, J. Hazardous Materials, 154 (2008) 337-346.
DOI: 10.1016/j.jhazmat.2007.10.031
Google Scholar