[1]
M. Stewart and K. Arnold, Gas Sweetening and Processing Field Manual. Gulf Professional Publishing, Oxford, UK, (2011).
Google Scholar
[2]
A.I. Kohl and R.B. Nielsen, Gas Purification, 5th ed., Gulf Publishing Company, Houston, Texas, (1997).
Google Scholar
[3]
A.A. Omar, R.M. Ramli, and P.F. Khamaruddin, Fenton Oxidation of Natural Gas Plant Wastewater, Canadian Journal on Chemical Engineering & Technology 1 (2010).
Google Scholar
[4]
W.J. Ng, Industrial Wastewater Treatment. Imperial College Press, London, UK, (2006).
Google Scholar
[5]
A.R. Khataee, M. Zarei, M. Fathinia, and M.K. Jafari, Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: Destruction pathway and response surface approach, Desalination 268 (2011).
DOI: 10.1016/j.desal.2010.10.008
Google Scholar
[6]
P. Bansal and D. Sud, Photodegradation of commercial dye, Procion Blue HERD from real textile wastewater using nanocatalysts, Desalination 267 (2011) 244-249.
DOI: 10.1016/j.desal.2010.09.034
Google Scholar
[7]
M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, Journal of Photochemistry and Photobiology A: Chemistry 203 (2009) 64-71.
DOI: 10.1016/j.jphotochem.2008.12.021
Google Scholar
[8]
N. Riaz, F.K. Chong, B.K. Dutta, Z. Man, M.S. Khan, E. Nurlaela, Photodegradation of Orange II under Visible Light using Cu–Ni/TiO2: Effect of Calcination Temperature, Chemical Engineering Journal 108 (2012) 185-186.
DOI: 10.1016/j.cej.2012.01.052
Google Scholar
[9]
X. Zhang, F. Wu, Z. Wang, Y. Guo, N. Deng, Photocatalytic degradation of 4, 4'-biphenol in TiO2 suspension in the presence of cyclodextrins: A trinity integrated mechanism, Journal of Molecular Catalysis A: Chemical 301 (2009) 134-139.
DOI: 10.1016/j.molcata.2008.11.022
Google Scholar
[10]
G. Wang, F. Wu, X. Zhang, M. Luo, N. Deng, Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions, Journal of Hazardous Materials 133 (2006) 85-91.
DOI: 10.1016/j.jhazmat.2005.09.058
Google Scholar
[11]
H. Slimen, A. Houas, J. P. Nogier, Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light, Journal of Photochemistry and Photobiology A: Chemistry 221 (2011) 13-21.
DOI: 10.1016/j.jphotochem.2011.04.013
Google Scholar
[12]
M.B. Fisher, D.A. Keane, P. Fernández-Ibáñez, J. Colreavy, S.J. Hinder, K.G. McGuigan, and S.C. Pillai, Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination, Applied Catalysis B: Environmental 130-131 (2013).
DOI: 10.1016/j.apcatb.2012.10.013
Google Scholar
[13]
G. Colón, M. Maicu, M.C. Hidalgo, J.A. Navío, Cu-doped TiO2 systems with improved photocatalytic activity, Applied Catalysis B: Environmental, 67 (2006) 41-51.
DOI: 10.1016/j.apcatb.2006.03.019
Google Scholar
[14]
J. Yu, Y. Hai, and M. Jaroniec, Photocatalytic hydrogen production over CuO-modified titania, Journal of Colloid and Interface Science 357 (2011) 223-228.
DOI: 10.1016/j.jcis.2011.01.101
Google Scholar
[15]
D.C. Montgomery, Design and analysis of experiments: Response surface method and designs. New Jersey: John Wiley and Sons, Inc., (2005).
Google Scholar
[16]
J. Chen, G. Li, Y. Huang, H. Zhang, H. Zhao, and T. An, Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene, Applied Catalysis B: Environmental 123-124 (2012).
DOI: 10.1016/j.apcatb.2012.04.020
Google Scholar
[17]
N.B. Parilti, C.S.U. Demirel, and M. Bekbolet, Response surface methodological approach for the assessment of the photocatalytic degradation of NOM, Journal of Photochemistry and Photobiology A: Chemistry 225 (2011) 26-35.
DOI: 10.1016/j.jphotochem.2011.09.021
Google Scholar
[18]
J. Zhang, D. Fu, Y. Xu, and C. Liu, Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology, Journal of Environmental Sciences 22 (2010) 1281-1289.
DOI: 10.1016/s1001-0742(09)60251-5
Google Scholar
[19]
V.A. Sakkas, M.A. Islam, C. Stalikas, and T.A. Albanis, Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation, Journal of Hazardous Materials 175 (2010) 33-44.
DOI: 10.1016/j.jhazmat.2009.10.050
Google Scholar
[20]
C.H. Lu, W.H. Wu, and R.B. Kale, Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders, Journal of Hazardous Materials 154 (2008) 649-654.
DOI: 10.1016/j.jhazmat.2007.10.074
Google Scholar