[1]
Yablonovitch E., Inhibited spontaneous emission in solid-state physics and electronics phys rev lett (1987) 2059-62.
DOI: 10.1103/physrevlett.58.2059
Google Scholar
[2]
Waterhouse GIN, Waterland MR. Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 26 (2007) 356-68.
DOI: 10.1016/j.poly.2006.06.024
Google Scholar
[3]
M. Bardosova FCD, M. E. Pemble, I. M. Povey, and R. H. Tredgold, Langmuir-Blodgett assembly of colloidal photonic crystals using silica particles prepared without the use of surfactant molecules. Journal of colloid and interface science 333 (2009).
DOI: 10.1016/j.jcis.2009.02.006
Google Scholar
[4]
Yin JGaY. Responsive photonic crystals. Angewandte Chemie (International ed in English) 50 (2011) 1492-522.
Google Scholar
[5]
Ge X, Wang M, Wang H, Yuan Q, Liu H, Tang T., Novel walnut-like multihollow polymer particles: synthesis and morphology control. Langmuir 26 (2010) 1635-41.
DOI: 10.1021/la902493r
Google Scholar
[6]
Sathish Kumar PS, Manivel A, Anandan S., Synthesis of Ag-ZnO nanoparticles for enhanced photocatalytic degradation of acid red 88 in aqueous environment. Water Sci Technol 59 (2009) 1423-30.
DOI: 10.2166/wst.2009.129
Google Scholar
[7]
Galisteo JF, García-Santamaría F, Golmayo D, Juárez BH, López C, Palacios E., Self-assembly approach to optical metamaterials. Journal of Optics A: Pure and Applied Optics 7 (2005) 244.
DOI: 10.1088/1464-4258/7/2/033
Google Scholar
[8]
Fudouzi H., Optical properties caused by periodical array structure with colloidal particles and their applications. Advanced Powder Technology 20 (2009) 502-8.
DOI: 10.1016/j.apt.2009.08.002
Google Scholar
[9]
F. Meseguer AB, and H. Mıguez, Synthesis of inverse opals. Colloids and Surfaces A: Physicochemical and Engineering Aspects 202 (2002) 281–90.
DOI: 10.1016/s0927-7757(01)01084-6
Google Scholar
[10]
Zakhidov AA, Khayrullin II, Baughman RH, Iqbal Z, Yoshino K, Kawagishi Y, et al., CVD synthesis of carbon-based metallic photonic crystals. Nanostructured Materials 12 (1999) 1089-95.
DOI: 10.1016/s0965-9773(99)00305-0
Google Scholar
[11]
King JS, Graugnard E, Summers CJ. TiO2 inverse opals fabricated using low-temperature atomic layer deposition. advanced materials 17 (2005) 1010-3.
DOI: 10.1002/adma.200400648
Google Scholar
[12]
Povey IM, Whitehead D, Thomas K, Pemble ME, Bardosova M, Renard J., Photonic crystal thin films of GaAs prepared by atomic layer deposition. Applied Physics Letters 89 (2006).
DOI: 10.1063/1.2345359
Google Scholar
[13]
P. Jiang JFB, K. S. Hwang, and V. L. Colvin, Single-crystal colloidal multilayers of controlled thickness. chem mater 11 (1999) 2132–40.
DOI: 10.1021/cm990080+
Google Scholar
[14]
G. Q. Liu ZSW, and Y. H. Ji. Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method thin solid films 518 (2010) 5083–90.
DOI: 10.1016/j.tsf.2010.02.062
Google Scholar
[15]
Zhang J, Z. Sun, and B. Yang, Self-assembly of photonic crystals from polymer colloids. Current Opinion in Colloid & Interface Science 2 (2009) 103-14.
DOI: 10.1016/j.cocis.2008.09.001
Google Scholar
[16]
Hatton B, Mishchenko L, Davis S, Sandhage KH, Aizenberg J., Assembly of large-area, highly ordered, crack-free inverse opal films. Proceedings of the National Academy of Sciences 107 (2010) 10354-9.
DOI: 10.1073/pnas.1000954107
Google Scholar
[17]
Kassim S, Padmanabhan SC, Salaun M, Pemble ME, PMMA-Gold metallodielectric photonic crystals and inverse opals: preparation and optical properties. AIP Conference Proceedings 2011; 1391: 263-5.
DOI: 10.1063/1.3646852
Google Scholar
[18]
Schroden R, Balakrishnan N., inverse opal photonic crystals a laboratory guide. University of Minnesota, 2001, pp.1-32.
Google Scholar