Preparation and Properties of Silica Inverse Opal via Self-Assembly

Article Preview

Abstract:

The bottom-up colloidal synthesis of photonic band gap (PBG) materials or photonic crystals (PC) has attracted considerable interest as compared to so-called top-down lithographic approaches due to the simple processing steps involved and the prospect of the economically viable production of complex 3-dimensional optical materials from simple colloidal particles. To date self-assembly techniques constitute the most popular approach to fabricate 3D photonic crystals from colloidal particle suspensions. Based on the natural tendency of monodisperse colloidal particles to organise into ordered arrays, this method represent the best option due to the ease of fabrication, ability to produce larger area samples and cost. Here we report on the fabrication of long range three-dimensional (3D) ordered poly (methyl methacrylate) (PMMA)-silica PC structures and the subsequent fabrication of robust silica inverse opals using self-assembly methods. The optical properties of these materials are described and discussed in terms of potential applications of these materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

318-324

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yablonovitch E., Inhibited spontaneous emission in solid-state physics and electronics phys rev lett (1987) 2059-62.

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[2] Waterhouse GIN, Waterland MR. Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 26 (2007) 356-68.

DOI: 10.1016/j.poly.2006.06.024

Google Scholar

[3] M. Bardosova FCD, M. E. Pemble, I. M. Povey, and R. H. Tredgold, Langmuir-Blodgett assembly of colloidal photonic crystals using silica particles prepared without the use of surfactant molecules. Journal of colloid and interface science 333 (2009).

DOI: 10.1016/j.jcis.2009.02.006

Google Scholar

[4] Yin JGaY. Responsive photonic crystals. Angewandte Chemie (International ed in English) 50 (2011) 1492-522.

Google Scholar

[5] Ge X, Wang M, Wang H, Yuan Q, Liu H, Tang T., Novel walnut-like multihollow polymer particles: synthesis and morphology control. Langmuir 26 (2010) 1635-41.

DOI: 10.1021/la902493r

Google Scholar

[6] Sathish Kumar PS, Manivel A, Anandan S., Synthesis of Ag-ZnO nanoparticles for enhanced photocatalytic degradation of acid red 88 in aqueous environment. Water Sci Technol 59 (2009) 1423-30.

DOI: 10.2166/wst.2009.129

Google Scholar

[7] Galisteo JF, García-Santamaría F, Golmayo D, Juárez BH, López C, Palacios E., Self-assembly approach to optical metamaterials. Journal of Optics A: Pure and Applied Optics 7 (2005) 244.

DOI: 10.1088/1464-4258/7/2/033

Google Scholar

[8] Fudouzi H., Optical properties caused by periodical array structure with colloidal particles and their applications. Advanced Powder Technology 20 (2009) 502-8.

DOI: 10.1016/j.apt.2009.08.002

Google Scholar

[9] F. Meseguer AB, and H. Mıguez, Synthesis of inverse opals. Colloids and Surfaces A: Physicochemical and Engineering Aspects 202 (2002) 281–90.

DOI: 10.1016/s0927-7757(01)01084-6

Google Scholar

[10] Zakhidov AA, Khayrullin II, Baughman RH, Iqbal Z, Yoshino K, Kawagishi Y, et al., CVD synthesis of carbon-based metallic photonic crystals. Nanostructured Materials 12 (1999) 1089-95.

DOI: 10.1016/s0965-9773(99)00305-0

Google Scholar

[11] King JS, Graugnard E, Summers CJ. TiO2 inverse opals fabricated using low-temperature atomic layer deposition. advanced materials 17 (2005) 1010-3.

DOI: 10.1002/adma.200400648

Google Scholar

[12] Povey IM, Whitehead D, Thomas K, Pemble ME, Bardosova M, Renard J., Photonic crystal thin films of GaAs prepared by atomic layer deposition. Applied Physics Letters 89 (2006).

DOI: 10.1063/1.2345359

Google Scholar

[13] P. Jiang JFB, K. S. Hwang, and V. L. Colvin, Single-crystal colloidal multilayers of controlled thickness. chem mater 11 (1999) 2132–40.

DOI: 10.1021/cm990080+

Google Scholar

[14] G. Q. Liu ZSW, and Y. H. Ji. Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method thin solid films 518 (2010) 5083–90.

DOI: 10.1016/j.tsf.2010.02.062

Google Scholar

[15] Zhang J, Z. Sun, and B. Yang, Self-assembly of photonic crystals from polymer colloids. Current Opinion in Colloid & Interface Science 2 (2009) 103-14.

DOI: 10.1016/j.cocis.2008.09.001

Google Scholar

[16] Hatton B, Mishchenko L, Davis S, Sandhage KH, Aizenberg J., Assembly of large-area, highly ordered, crack-free inverse opal films. Proceedings of the National Academy of Sciences 107 (2010) 10354-9.

DOI: 10.1073/pnas.1000954107

Google Scholar

[17] Kassim S, Padmanabhan SC, Salaun M, Pemble ME, PMMA-Gold metallodielectric photonic crystals and inverse opals: preparation and optical properties. AIP Conference Proceedings 2011; 1391: 263-5.

DOI: 10.1063/1.3646852

Google Scholar

[18] Schroden R, Balakrishnan N., inverse opal photonic crystals a laboratory guide. University of Minnesota, 2001, pp.1-32.

Google Scholar