Development of Software for Analyzing of Solar Irradiance and Sizing of Stand-Alone PV Power Systems

Article Preview

Abstract:

An analyzing software was developed for studying the solar irradiance on the Universidad Militar Nueva Granada (UMNG) Campus, as well as for sizing a stand-alone photovoltaic (PV) system in terms of power generation and energy storage, which is intended to be part of an hybrid DC smart grid with several energy sources, including not only solar but additional renewable. This software has a two stage sequential structure: First, it let to calculate the total solar energy resource and define the average irradiance and its variability for several user-defined periods, i.e. daily, monthly, annual and even multiannual. Simultaneously, the software gives the user a graphical data variation, where irradiance in hours of bright sunlight (at Standard Test Conditions - STC: 1 kWh/m2) and variability are organized in a period range (hours, days or months). The sizing stage let to define the system architecture in terms of modules and batteries, i.e. estimate PV network and battery bank. Finally, after providing load, voltage level and autonomy, it proceeds to calculations, considering factors of safety.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-19

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Unidad de Planeación Minero Energética UPME, Atlas de Radiación Solar de Colombia.: UPME-IDEAM, (2005).

Google Scholar

[2] J. Hernández, Estudio del recurso solar en la ciudad de Bogotá para el diseño de sistemas fotovoltaicos interconectados residenciales, Revista Colombiana de Física, vol. 42, pp.161-165, (2010).

Google Scholar

[3] R. Posadillo and R. Lopez Luque, A sizing method for stand-alone PV installations with variable demand, Renewable Energy, vol. 33, pp.1049-1055, (2008).

DOI: 10.1016/j.renene.2007.06.003

Google Scholar

[4] J. Abella, J. Reyes and J. Mora, Diseño e implementación de un sistema fotovoltaico híbrido y desarrollo de su regulador de carga aplicando instrumentación virtual, Elementos, vol. 2, pp.29-45, (2012).

DOI: 10.15765/e.v2i2.170

Google Scholar

[5] T. Markvart, A. Fragaki and J.N. Ross, PV system sizing using observed time series of solar radiation, Solar Energy, vol. 80, pp.46-50, (2006).

DOI: 10.1016/j.solener.2005.08.011

Google Scholar

[6] S. Chen, Optimal Sizing Stand-alone PV Systems in Terms of Extreme Value Theory, in TENCON 2009, (2009).

DOI: 10.1109/tencon.2009.5396221

Google Scholar

[7] A. Fragaki and T. Markvart, Stand-alone PV system design: Results using a new sizing approach, Renewable Energy, vol. 33, pp.162-167, (2008).

DOI: 10.1016/j.renene.2007.01.016

Google Scholar

[8] A. Fragaki and T. Markvart, Does climate change affect the design of stand-alone PV systems?, Progress in Photovoltaics: Research and Applications, vol. 13(7), pp.635-639, (2005).

DOI: 10.1002/pip.617

Google Scholar

[9] O. Perpinan, Energía Solar Fotovoltáica, Creative Commons, Ed.: O. Perpinan Lamigueiro, (2013).

Google Scholar

[10] A. Hossain, Economic viability of solar home systems: case study of Bangladesh, Renewable Energy, vol. 35, pp.1125-1129, 2010. x.

DOI: 10.1016/j.renene.2009.10.038

Google Scholar