Nonlinear Analysis of Unbalanced Mass of Vertical Conveyerwith Non-Ideal Exciters

Article Preview

Abstract:

In the area of mechanics and electronics, the behaviors of mechanical systems under periodic loadings have been examined by many researchers. Vertical conveyors are effective examples observing various kinds of parameters of this problem. In this study, the nonlinear analysis of unbalanced mass of vertical conveyor with non-ideal DC motor has been analyzed. The results of numerical simulation are plotted and Lyapunov exponents are calculated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-43

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. O. Spivakovasky and V. K., Dyachkov, Conveying Machines, Volume (I, II), Mir Publichers Moscow, (1985).

Google Scholar

[2] M.A. Parameswaran, S. Ganapathy, Vibratory Conveying-Analysis and Design: A Review. Mechanism and Machine Theory Vol. 14 (1979) pp.89-97.

DOI: 10.1016/0094-114x(79)90024-7

Google Scholar

[3] Lawrence W. Hallanger, The daynamic stability of an unbalanced mass exciter, Thesis, California Institute of Technology Pasadena, California, (1967).

Google Scholar

[4] V. O. Konokenko, Vibrating Problems With a Limited Power Supply, Ilife, London, (1969).

Google Scholar

[5] J. M. Balthazar, D. T. Mook, H. I. Weber, R. M. L. R. F. Brasıl, A. Fenili, D. Belato, J. L. P. Felix, An Overview on Non-Ideal Vibrations, Mechanica, 38 (2003) . 613-621.

DOI: 10.1023/a:1025877308510

Google Scholar

[6] J.M. Balthazar, R. M. L. R. F. Brasıl, H. I. Weber, A. Fenili, D. Belato, J. L. P. Felix, and F. J Garzelli, A Review of New Vibration Issues due to Non-Ideal Energy Sources, CRC Press, LLC, (2004).

Google Scholar

[7] M. R. Bolla, J.M. Balthazar, J. L.P. Felix, D.T. Mook, On an approximate analytical solution to a nonlinear vibrating problem, excited by a nonideal motor. Nonlinear Dyn, 50 (2007) 841-847.

DOI: 10.1007/s11071-007-9232-3

Google Scholar

[8] A. H. Nayfeh, and D. T., Mook, Nonlinear Oscillations. Wiley, New York, (1979).

Google Scholar

[9] G. Schmidt, and A. Tondl, Non-Linear Vibrations. Cambridge University Press, (1986).

Google Scholar

[10] A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics: Analitical, Computation and Experimental Methods. Wiley, (2004).

Google Scholar

[11] H. Bayıroğlu, Nonlinear analysis of unbalanced mass of vertical conveyor: primary, subharmonic, and superharmonic response. Nonlinear Dyn , 71 (2013) 93-107.

DOI: 10.1007/s11071-012-0643-4

Google Scholar

[12] S. Ganapathy, and M.A. Parameswaran, Transition over resonance and power requirements of an unbalanced mass driven vibratory system. Mech. Mach. Theory, 21 (1986) 73-85.

DOI: 10.1016/0094-114x(86)90031-5

Google Scholar

[13] J. Awrejcewicz and C.H. Lamarque, Bifurcation and chaos in nonsmooth mechanical systems. [electronic resource]. River Edge, NJ : World Scientific (2003).

DOI: 10.1142/5342

Google Scholar

[14] S. Lynch, Dynamical Systems with Applications using Mathematica, Boston. Basel. Berlin (2007).

Google Scholar

[15] V. Piccirillo, J.M. Balthazar, B. R. Pontes JR., J. L.P. Felix, On a nonlinear and chaotic non-ideal vibrating system with shape memory alloy (SMA). Journal of theoretical and Applied Mechanics, 46, 3(Warsaw 2008) , pp.597-620.

Google Scholar

[16] A. Wolf, J.B. Swift., H.L. Swinney, J.A. Vastano, Lyapunov exponenets from a time series, Physica D, 16 (1985) 285-317.

DOI: 10.1016/0167-2789(85)90011-9

Google Scholar