Natural Frequency of Laminated Composite Plates Using a Sinusoidal Theory

Article Preview

Abstract:

Sinusoidal shear deformation theory is presented to analyze the natural frequencies of simply supported laminated composite plates. The governing differential equations based on sinusoidal theory are solved by a Navier-type analytical method. The present results are compared with the available published results which verify the accuracy of sinusoidal theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-152

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sahoo, B.N. Singh, A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates, Composite Structures. 117 (2014) 316-332.

DOI: 10.1016/j.compstruct.2014.05.002

Google Scholar

[2] D. Ngo-Cong, N. Mai-Duy, W. Karunasena, T. Tran-Cong, Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method, Computers & Structures, 89 (2011) 1-13.

DOI: 10.1016/j.compstruc.2010.07.012

Google Scholar

[3] X.Y. Cui, G.R. Liu, G.Y. Li, Bending and vibration responses of laminated composite plates using an edge-based smoothing technique, Engineering Analysis with Boundary Elements, 35 (2011) 818-826.

DOI: 10.1016/j.enganabound.2011.01.007

Google Scholar

[4] S. Xiang, H. Shi, K.M. Wang, Y.T. Ai, Y.D. Sha, Thin plate spline radial basis functions for vibration analysis of clamped laminated composite plates, European Journal of Mechanics - A/Solids. 29 (2010) 844-850.

DOI: 10.1016/j.euromechsol.2010.02.012

Google Scholar

[5] H. Matsunaga, Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading, Composite Structures. 77 (2007) 249-262.

DOI: 10.1016/j.compstruct.2005.07.002

Google Scholar

[6] S. Xiang, G.W. Kang, Local thin plate spline collocation for free vibration analysis of laminated composite plates, European Journal of Mechanics - A/Solids, 33(2012), 24-30.

DOI: 10.1016/j.euromechsol.2011.11.004

Google Scholar

[7] S. Xiang, G.C. Li, W. Zhang, M.S. Yang, A meshless local radial point collocation method for free vibration analysis of laminated composite plates, Composite Structures. 93 (2011) 280-286.

DOI: 10.1016/j.compstruct.2010.09.018

Google Scholar

[8] S. Xiang, K.M. Wang, Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric RBF, Thin-Walled Structures. 47 (2009) 304-310.

DOI: 10.1016/j.tws.2008.07.007

Google Scholar

[9] M. Aydogdu, A new shear deformation theory for laminated composite plates, Composite Structures. 89 (2009) 94–101.

DOI: 10.1016/j.compstruct.2008.07.008

Google Scholar