Review of Finite Element Simulation of Granular Materials

Article Preview

Abstract:

The behaviour of granular materials especially under dynamic loading has been under investigation for years. In recent years, the advancing computer technology makes it possible to model complicate behaviour under different loadings. In this review paper, major advances and researches in the field of providing conceptual model for behaviour of granular materials have been reviewed. The reviewers have tried to categorise the researches in term of their approach to modelling the mechanical behaviour of granular materials and then identify the gaps to provide ground for the future researches.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-226

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chegenizadeh, A. and H. Nikraz, Shear test on reinforced clay, Advanced Materials Research, 2011, pp.3223-3227.

DOI: 10.4028/www.scientific.net/amr.250-253.3223

Google Scholar

[2] Chegenizadeh, A. and H. Nikraz, Study on modulus of elasticity of reinforced clay, Advanced Materials Research, 2011, pp.5885-5889.

DOI: 10.4028/www.scientific.net/amr.243-249.5885

Google Scholar

[3] Chegenizadeh, A. and H. Nikraz, Investigation on compaction characteristics of reinforced soil, Advanced Materials Research, 2011, pp.964-968.

DOI: 10.4028/www.scientific.net/amr.261-263.964

Google Scholar

[4] Chegenizadeh, A. and H. Nikraz, Investigation on strength of fiber reinforced clay, Advanced Materials Research, 2011, pp.957-963.

DOI: 10.4028/www.scientific.net/amr.261-263.957

Google Scholar

[5] Chegenizadeh, A. and H. Nikraz, Geotechnical parameters of composite soil, Advanced Materials Research, 2011, pp.1651-1655.

DOI: 10.4028/www.scientific.net/amr.308-310.1651

Google Scholar

[6] Chegenizadeh, A. and H. Nikraz, Permeability test on reinforced clayey sand, World Academy of Science, Engineering and Technology 78 (2011) 130-133.

Google Scholar

[7] Chegenizadeh, A., B. Ghadimi, H. Nikraz and M. Şimşek, A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium, Structural Engineering and Mechanics 51 (2014) 727-741.

DOI: 10.12989/sem.2014.51.5.727

Google Scholar

[8] Al-Qadi, I.L., H. Wang and E. Tutumluer, Dynamic Analysis of Thin Asphalt Pavements by Using Cross-Anisotropic Stress-Dependent Properties for Granular Layer, Transportation Research Record: Journal of the Transportation Research Board 2154 (2010).

DOI: 10.3141/2154-16

Google Scholar

[9] Ghadimi, B., A. Nega and H. Nikraz, Simulation of Shakedown Behavior in Pavement's Granular Layer, International Journal of Engineering and Technology 7 (2014) 6.

DOI: 10.7763/ijet.2015.v7.791

Google Scholar

[10] Ghadimi, B., H. Nikraz, C. Leek and A. Nega, A comparison between effects of linear and non-linear mechanistic behaviour of materials on the layered flexible pavement response, Advanced Materials Research 723 (2013) 12-21.

DOI: 10.4028/www.scientific.net/amr.723.12

Google Scholar

[11] Liu, Y., Z. You and Y. Zhao, Three-dimensional discrete element modeling of asphalt concrete: Size effects of elements, Construction and Building Materials 37 (2012) 775-782.

DOI: 10.1016/j.conbuildmat.2012.08.007

Google Scholar

[12] Ozer, H., I.L. Al-Qadi, H. Wang and Z. Leng, Characterisation of interface bonding between hot-mix asphalt overlay and concrete pavements: modelling and in-situ response to accelerated loading, International Journal of Pavement Engineering 13 (2012).

DOI: 10.1080/10298436.2011.596935

Google Scholar

[13] Gedafa, D.S., Comparison of Flexible Pavement Performance Using KENLAYER and HDM-4, Midwest Transportation Consortium, Ames, Iowa (2006).

Google Scholar

[14] Ghadimi, B., H. Asadi, H. Nikraz and C. Leek, Effects of Geometrical Parameters on Numerical Modeling of Pavement Granular Material, Airfield and Highway Pavement 2013 @ Sustainable and Efficient PavementsASCE, 2013, pp.1291-1303.

DOI: 10.1061/9780784413005.109

Google Scholar

[15] Hadi, M. and M. Symons, Computing stresses in road pavements using CIRCLY, MSC/NASTRAN and STRAND6, Transactions of the Institution of Engineers, Australia. Civil engineering 38 (1996) 89-93.

Google Scholar

[16] Huang, Y.H., Pavement analysis and design, Prentice-Hall Inc., New Jersey, USA, (1993).

Google Scholar

[17] Ullidtz, P., Analytical tools for design of flexible pavements, Keynote Address. In: Proceedings if the 9th International Conference on Asphalt Pavements, Copenhagen, , (2002).

Google Scholar

[18] Sadd, M.H., Elasticity: theory, applications, and numerics, Access Online via Elsevier, (2009).

Google Scholar

[19] Adu-Osei, A., D.N. Little and R.L. Lytton, Cross-anisotropic characterization of unbound granular materials, Transportation Research Record: Journal of the Transportation Research Board 1757 (2001) 82-91.

DOI: 10.3141/1757-10

Google Scholar

[20] Rowshanzamir, M.A., Resilient Cross-anisotropic Behaviour of Granular Base Materials Under Repetitive Loading, University of New South Wales, Sidney (1997).

Google Scholar

[21] Seyhan, U. and E. Tutumluer, Advanced Characterization of Granular Materials for Mechanistic Based Pavement Design, ASCE, (2000).

DOI: 10.1061/40509(286)4

Google Scholar

[22] Wardle, L., Program CIRCLY: A Computer Program for the Analysis of Multiple Complex Circular Loads on Layered Anisotropic Media. User's Manual, Division of Applied Geomechanics, Commonwealth Scientific and Industrial Research Organization Australia, (1977).

Google Scholar

[23] AUSTROADS, Pavement Design - A Guide to the Structural Design of Road Pavements, Austroads, Sydney, Australia, (2004).

Google Scholar

[24] Cho, Y.H., B.F. McCullough and J. Weissmann, Considerations on finite-element method application in pavement structural analysis, Transportation Research Record: Journal of the Transportation Research Board 1539 (1996) 96-101.

DOI: 10.1177/0361198196153900113

Google Scholar

[25] Helwany, S., J. Dyer and J. Leidy, Finite-element analyses of flexible pavements, Journal of Transportation Engineering 124 (1998) 491-499.

DOI: 10.1061/(asce)0733-947x(1998)124:5(491)

Google Scholar

[26] Boussinesq, J., Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d'analyse, Gauthier-Villars, 1885.

DOI: 10.1017/cbo9780511702518.038

Google Scholar

[27] Duncan, J.M. and C. -Y. Chang, Nonlinear analysis of stress and strain in soils, Journal of the Soil Mechanics and Foundations Division 96 (1970) 1629-1653.

DOI: 10.1061/jsfeaq.0001458

Google Scholar

[28] Hjelmstad, K. and E. Taciroglu, Analysis and implementation of resilient modulus models for granular solids, Journal of engineering mechanics 126 (2000) 821-830.

DOI: 10.1061/(asce)0733-9399(2000)126:8(821)

Google Scholar

[29] Taciroglu, E. and K. Hjelmstad, Simple nonlinear model for elastic response of cohesionless granular materials, Journal of engineering mechanics 128 (2002) 969-978.

DOI: 10.1061/(asce)0733-9399(2002)128:9(969)

Google Scholar

[30] Kim, M. and E. Tutumluer, Modeling Nonlinear, Stress‐Dependent Pavement Foundation Behavior Using a General‐Purpose Finite Element Program, ASCE, (2006).

DOI: 10.1061/40866(198)5

Google Scholar

[31] Kim, M., Three-dimensional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior, University of Illinois, (2007).

Google Scholar

[32] Kim, M., E. Tutumluer and J. Kwon, Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements, International Journal of Geomechanics 9 (2009) 195.

DOI: 10.1061/(asce)1532-3641(2009)9:5(195)

Google Scholar

[33] Kim, M. and E. Tutumluer, Validation of a Three-Dimensional Finite Element Model using Airfield Pavement Multiple Wheel Load Responses, Road Materials and Pavement Design 11 (2010) 387-408.

DOI: 10.1080/14680629.2010.9690281

Google Scholar

[34] Kim, M. and J.H. Lee, Study on nonlinear pavement responses of low volume roadways subject to multiple wheel loads, Journal of Civil Engineering and Management 17 (2011) 45-54.

DOI: 10.3846/13923730.2011.554012

Google Scholar

[35] Witczak, M.W. and J. Uzan, The universal airport pavement design system rep. I granular material characterization, Dept. of Civil Engineering, University of Maryland, College Park, MD, USA, (1988).

Google Scholar

[36] Thompson, M.R. and Q.L. Robnett, Resilient properties of subgrade soils, Transportation Engineering Journal 105 (1979) 71-89.

DOI: 10.1061/tpejan.0000772

Google Scholar

[37] Cortes, D., H. Shin and J. Santamarina, Numerical simulation of inverted pavement systems, Journal of Transportation Engineering 138 (2012) 1507-1519.

DOI: 10.1061/(asce)te.1943-5436.0000472

Google Scholar

[38] Wang, H. and I.L. Al-Qadi, Importance of Nonlinear Anisotropic Modeling of Granular Base for Predicting Maximum Viscoelastic Pavement Responses under Moving Vehicular Loading, Journal of engineering mechanics 139 (2012) 29-38.

DOI: 10.1061/(asce)em.1943-7889.0000465

Google Scholar

[39] Yu, H.S., Plasticity and geotechnics, Springer, (2006).

Google Scholar

[40] Zaghloul, S. and T. White, Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement, Transportation Research Record (1993) 60-69.

Google Scholar

[41] Sukumaran, B., M. Willis and N. Chamala, Three dimensional finite element modeling of flexible pavements, FAA Worldwide Airport Technology Transfer Conference, Atlantic City, New Jersey, (2004).

DOI: 10.1061/40776(155)7

Google Scholar

[42] Saad, B., H. Mitri and H. Poorooshasb, Three-dimensional dynamic analysis of flexible conventional pavement foundation, Journal of Transportation Engineering 131 (2005) 460-469.

DOI: 10.1061/(asce)0733-947x(2005)131:6(460)

Google Scholar

[43] Howard, I.L. and K.A. Warren, Finite-element modeling of instrumented flexible pavements under stationary transient loading, Journal of Transportation Engineering 135 (2009) 53-61.

DOI: 10.1061/(asce)0733-947x(2009)135:2(53)

Google Scholar

[44] Ghadimi, B., H. Nikraz and C. Leek, Effects of asphalt layer thickness on the dynamic analysis of flexible pavement: A numerical study, in AAPA, ed., 15th AAPA International Flexible Pavements Conference Brisbane – Australia, (2013).

Google Scholar

[45] Melan, E., Zur plastizität des räumlichen kontinuums, Archive of Applied Mechanics 9 (1938) 116-126.

DOI: 10.1007/bf02084409

Google Scholar

[46] Zarka, J. and J. Casier, Elastic plastic response of structure to cyclic loading: practical rules, Mechanics today 6 (1979) 93-198.

DOI: 10.1016/b978-0-08-024749-6.50014-4

Google Scholar

[47] Yu, H. and M. Hossain, Lower bound shakedown analysis of layered pavements using discontinuous stress fields, Computer Methods in Applied Mechanics and Engineering 167 (1998) 209-222.

DOI: 10.1016/s0045-7825(98)00120-0

Google Scholar

[48] Habiballah, T. and C. Chazallon, An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials, International Journal for Numerical and Analytical Methods in Geomechanics 29 (2005) 577-596.

DOI: 10.1002/nag.426

Google Scholar

[49] Chazallon, C., P. Hornych and S. Mouhoubi, Elastoplastic Model for the Long-Term Behavior Modeling of Unbound Granular Materials in Flexible Pavements, International Journal of Geomechanics 6 (2006) 279.

DOI: 10.1061/(asce)1532-3641(2006)6:4(279)

Google Scholar

[50] Boyce, J., S. Brown and P. Pell, The resilient behaviour of a granular material under repeated loading, Australian Road Research Board Conference Proc, (1976).

Google Scholar

[51] Allou, F., C. Chazallon and P. Hornych, A numerical model for flexible pavements rut depth evolution with time, International Journal for Numerical and Analytical Methods in Geomechanics 31 (2007) 1-22.

DOI: 10.1002/nag.521

Google Scholar

[52] Chazallon, C., F. Allou, P. Hornych and S. Mouhoubi, Finite elements modelling of the long‐term behaviour of a full‐scale flexible pavement with the shakedown theory, International Journal for Numerical and Analytical Methods in Geomechanics 33 (2009).

DOI: 10.1002/nag.702

Google Scholar

[53] François, S., C. Karg, W. Haegeman and G. Degrande, A numerical model for foundation settlements due to deformation accumulation in granular soils under repeated small amplitude dynamic loading, International Journal for Numerical and Analytical Methods in Geomechanics 34 (2010).

DOI: 10.1002/nag.807

Google Scholar