[1]
Chegenizadeh, A. and H. Nikraz, Shear test on reinforced clay, Advanced Materials Research, 2011, pp.3223-3227.
DOI: 10.4028/www.scientific.net/amr.250-253.3223
Google Scholar
[2]
Chegenizadeh, A. and H. Nikraz, Study on modulus of elasticity of reinforced clay, Advanced Materials Research, 2011, pp.5885-5889.
DOI: 10.4028/www.scientific.net/amr.243-249.5885
Google Scholar
[3]
Chegenizadeh, A. and H. Nikraz, Investigation on compaction characteristics of reinforced soil, Advanced Materials Research, 2011, pp.964-968.
DOI: 10.4028/www.scientific.net/amr.261-263.964
Google Scholar
[4]
Chegenizadeh, A. and H. Nikraz, Investigation on strength of fiber reinforced clay, Advanced Materials Research, 2011, pp.957-963.
DOI: 10.4028/www.scientific.net/amr.261-263.957
Google Scholar
[5]
Chegenizadeh, A. and H. Nikraz, Geotechnical parameters of composite soil, Advanced Materials Research, 2011, pp.1651-1655.
DOI: 10.4028/www.scientific.net/amr.308-310.1651
Google Scholar
[6]
Chegenizadeh, A. and H. Nikraz, Permeability test on reinforced clayey sand, World Academy of Science, Engineering and Technology 78 (2011) 130-133.
Google Scholar
[7]
Chegenizadeh, A., B. Ghadimi, H. Nikraz and M. Şimşek, A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium, Structural Engineering and Mechanics 51 (2014) 727-741.
DOI: 10.12989/sem.2014.51.5.727
Google Scholar
[8]
Al-Qadi, I.L., H. Wang and E. Tutumluer, Dynamic Analysis of Thin Asphalt Pavements by Using Cross-Anisotropic Stress-Dependent Properties for Granular Layer, Transportation Research Record: Journal of the Transportation Research Board 2154 (2010).
DOI: 10.3141/2154-16
Google Scholar
[9]
Ghadimi, B., A. Nega and H. Nikraz, Simulation of Shakedown Behavior in Pavement's Granular Layer, International Journal of Engineering and Technology 7 (2014) 6.
DOI: 10.7763/ijet.2015.v7.791
Google Scholar
[10]
Ghadimi, B., H. Nikraz, C. Leek and A. Nega, A comparison between effects of linear and non-linear mechanistic behaviour of materials on the layered flexible pavement response, Advanced Materials Research 723 (2013) 12-21.
DOI: 10.4028/www.scientific.net/amr.723.12
Google Scholar
[11]
Liu, Y., Z. You and Y. Zhao, Three-dimensional discrete element modeling of asphalt concrete: Size effects of elements, Construction and Building Materials 37 (2012) 775-782.
DOI: 10.1016/j.conbuildmat.2012.08.007
Google Scholar
[12]
Ozer, H., I.L. Al-Qadi, H. Wang and Z. Leng, Characterisation of interface bonding between hot-mix asphalt overlay and concrete pavements: modelling and in-situ response to accelerated loading, International Journal of Pavement Engineering 13 (2012).
DOI: 10.1080/10298436.2011.596935
Google Scholar
[13]
Gedafa, D.S., Comparison of Flexible Pavement Performance Using KENLAYER and HDM-4, Midwest Transportation Consortium, Ames, Iowa (2006).
Google Scholar
[14]
Ghadimi, B., H. Asadi, H. Nikraz and C. Leek, Effects of Geometrical Parameters on Numerical Modeling of Pavement Granular Material, Airfield and Highway Pavement 2013 @ Sustainable and Efficient PavementsASCE, 2013, pp.1291-1303.
DOI: 10.1061/9780784413005.109
Google Scholar
[15]
Hadi, M. and M. Symons, Computing stresses in road pavements using CIRCLY, MSC/NASTRAN and STRAND6, Transactions of the Institution of Engineers, Australia. Civil engineering 38 (1996) 89-93.
Google Scholar
[16]
Huang, Y.H., Pavement analysis and design, Prentice-Hall Inc., New Jersey, USA, (1993).
Google Scholar
[17]
Ullidtz, P., Analytical tools for design of flexible pavements, Keynote Address. In: Proceedings if the 9th International Conference on Asphalt Pavements, Copenhagen, , (2002).
Google Scholar
[18]
Sadd, M.H., Elasticity: theory, applications, and numerics, Access Online via Elsevier, (2009).
Google Scholar
[19]
Adu-Osei, A., D.N. Little and R.L. Lytton, Cross-anisotropic characterization of unbound granular materials, Transportation Research Record: Journal of the Transportation Research Board 1757 (2001) 82-91.
DOI: 10.3141/1757-10
Google Scholar
[20]
Rowshanzamir, M.A., Resilient Cross-anisotropic Behaviour of Granular Base Materials Under Repetitive Loading, University of New South Wales, Sidney (1997).
Google Scholar
[21]
Seyhan, U. and E. Tutumluer, Advanced Characterization of Granular Materials for Mechanistic Based Pavement Design, ASCE, (2000).
DOI: 10.1061/40509(286)4
Google Scholar
[22]
Wardle, L., Program CIRCLY: A Computer Program for the Analysis of Multiple Complex Circular Loads on Layered Anisotropic Media. User's Manual, Division of Applied Geomechanics, Commonwealth Scientific and Industrial Research Organization Australia, (1977).
Google Scholar
[23]
AUSTROADS, Pavement Design - A Guide to the Structural Design of Road Pavements, Austroads, Sydney, Australia, (2004).
Google Scholar
[24]
Cho, Y.H., B.F. McCullough and J. Weissmann, Considerations on finite-element method application in pavement structural analysis, Transportation Research Record: Journal of the Transportation Research Board 1539 (1996) 96-101.
DOI: 10.1177/0361198196153900113
Google Scholar
[25]
Helwany, S., J. Dyer and J. Leidy, Finite-element analyses of flexible pavements, Journal of Transportation Engineering 124 (1998) 491-499.
DOI: 10.1061/(asce)0733-947x(1998)124:5(491)
Google Scholar
[26]
Boussinesq, J., Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d'analyse, Gauthier-Villars, 1885.
DOI: 10.1017/cbo9780511702518.038
Google Scholar
[27]
Duncan, J.M. and C. -Y. Chang, Nonlinear analysis of stress and strain in soils, Journal of the Soil Mechanics and Foundations Division 96 (1970) 1629-1653.
DOI: 10.1061/jsfeaq.0001458
Google Scholar
[28]
Hjelmstad, K. and E. Taciroglu, Analysis and implementation of resilient modulus models for granular solids, Journal of engineering mechanics 126 (2000) 821-830.
DOI: 10.1061/(asce)0733-9399(2000)126:8(821)
Google Scholar
[29]
Taciroglu, E. and K. Hjelmstad, Simple nonlinear model for elastic response of cohesionless granular materials, Journal of engineering mechanics 128 (2002) 969-978.
DOI: 10.1061/(asce)0733-9399(2002)128:9(969)
Google Scholar
[30]
Kim, M. and E. Tutumluer, Modeling Nonlinear, Stress‐Dependent Pavement Foundation Behavior Using a General‐Purpose Finite Element Program, ASCE, (2006).
DOI: 10.1061/40866(198)5
Google Scholar
[31]
Kim, M., Three-dimensional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior, University of Illinois, (2007).
Google Scholar
[32]
Kim, M., E. Tutumluer and J. Kwon, Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements, International Journal of Geomechanics 9 (2009) 195.
DOI: 10.1061/(asce)1532-3641(2009)9:5(195)
Google Scholar
[33]
Kim, M. and E. Tutumluer, Validation of a Three-Dimensional Finite Element Model using Airfield Pavement Multiple Wheel Load Responses, Road Materials and Pavement Design 11 (2010) 387-408.
DOI: 10.1080/14680629.2010.9690281
Google Scholar
[34]
Kim, M. and J.H. Lee, Study on nonlinear pavement responses of low volume roadways subject to multiple wheel loads, Journal of Civil Engineering and Management 17 (2011) 45-54.
DOI: 10.3846/13923730.2011.554012
Google Scholar
[35]
Witczak, M.W. and J. Uzan, The universal airport pavement design system rep. I granular material characterization, Dept. of Civil Engineering, University of Maryland, College Park, MD, USA, (1988).
Google Scholar
[36]
Thompson, M.R. and Q.L. Robnett, Resilient properties of subgrade soils, Transportation Engineering Journal 105 (1979) 71-89.
DOI: 10.1061/tpejan.0000772
Google Scholar
[37]
Cortes, D., H. Shin and J. Santamarina, Numerical simulation of inverted pavement systems, Journal of Transportation Engineering 138 (2012) 1507-1519.
DOI: 10.1061/(asce)te.1943-5436.0000472
Google Scholar
[38]
Wang, H. and I.L. Al-Qadi, Importance of Nonlinear Anisotropic Modeling of Granular Base for Predicting Maximum Viscoelastic Pavement Responses under Moving Vehicular Loading, Journal of engineering mechanics 139 (2012) 29-38.
DOI: 10.1061/(asce)em.1943-7889.0000465
Google Scholar
[39]
Yu, H.S., Plasticity and geotechnics, Springer, (2006).
Google Scholar
[40]
Zaghloul, S. and T. White, Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement, Transportation Research Record (1993) 60-69.
Google Scholar
[41]
Sukumaran, B., M. Willis and N. Chamala, Three dimensional finite element modeling of flexible pavements, FAA Worldwide Airport Technology Transfer Conference, Atlantic City, New Jersey, (2004).
DOI: 10.1061/40776(155)7
Google Scholar
[42]
Saad, B., H. Mitri and H. Poorooshasb, Three-dimensional dynamic analysis of flexible conventional pavement foundation, Journal of Transportation Engineering 131 (2005) 460-469.
DOI: 10.1061/(asce)0733-947x(2005)131:6(460)
Google Scholar
[43]
Howard, I.L. and K.A. Warren, Finite-element modeling of instrumented flexible pavements under stationary transient loading, Journal of Transportation Engineering 135 (2009) 53-61.
DOI: 10.1061/(asce)0733-947x(2009)135:2(53)
Google Scholar
[44]
Ghadimi, B., H. Nikraz and C. Leek, Effects of asphalt layer thickness on the dynamic analysis of flexible pavement: A numerical study, in AAPA, ed., 15th AAPA International Flexible Pavements Conference Brisbane – Australia, (2013).
Google Scholar
[45]
Melan, E., Zur plastizität des räumlichen kontinuums, Archive of Applied Mechanics 9 (1938) 116-126.
DOI: 10.1007/bf02084409
Google Scholar
[46]
Zarka, J. and J. Casier, Elastic plastic response of structure to cyclic loading: practical rules, Mechanics today 6 (1979) 93-198.
DOI: 10.1016/b978-0-08-024749-6.50014-4
Google Scholar
[47]
Yu, H. and M. Hossain, Lower bound shakedown analysis of layered pavements using discontinuous stress fields, Computer Methods in Applied Mechanics and Engineering 167 (1998) 209-222.
DOI: 10.1016/s0045-7825(98)00120-0
Google Scholar
[48]
Habiballah, T. and C. Chazallon, An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials, International Journal for Numerical and Analytical Methods in Geomechanics 29 (2005) 577-596.
DOI: 10.1002/nag.426
Google Scholar
[49]
Chazallon, C., P. Hornych and S. Mouhoubi, Elastoplastic Model for the Long-Term Behavior Modeling of Unbound Granular Materials in Flexible Pavements, International Journal of Geomechanics 6 (2006) 279.
DOI: 10.1061/(asce)1532-3641(2006)6:4(279)
Google Scholar
[50]
Boyce, J., S. Brown and P. Pell, The resilient behaviour of a granular material under repeated loading, Australian Road Research Board Conference Proc, (1976).
Google Scholar
[51]
Allou, F., C. Chazallon and P. Hornych, A numerical model for flexible pavements rut depth evolution with time, International Journal for Numerical and Analytical Methods in Geomechanics 31 (2007) 1-22.
DOI: 10.1002/nag.521
Google Scholar
[52]
Chazallon, C., F. Allou, P. Hornych and S. Mouhoubi, Finite elements modelling of the long‐term behaviour of a full‐scale flexible pavement with the shakedown theory, International Journal for Numerical and Analytical Methods in Geomechanics 33 (2009).
DOI: 10.1002/nag.702
Google Scholar
[53]
François, S., C. Karg, W. Haegeman and G. Degrande, A numerical model for foundation settlements due to deformation accumulation in granular soils under repeated small amplitude dynamic loading, International Journal for Numerical and Analytical Methods in Geomechanics 34 (2010).
DOI: 10.1002/nag.807
Google Scholar