[1]
Liao, W. Clustering of time series data-a survey. Pattern Recognition, vol. 38 (2005), no. 11, pp.1857-74.
Google Scholar
[2]
Rabiner, L. A tutorial on hidden Markov models and selected applications in speech recognition. Readings in speech recognition, vol. 53 (1990), no. 3, pp.267-96.
DOI: 10.1016/b978-0-08-051584-7.50027-9
Google Scholar
[3]
Baldi, P. & Brunak, S. Bioinformatics: the machine learning approach, (2001).
Google Scholar
[4]
Wang, J.J.L. & Singh, S. Video analysis of human dynamics-a survey. Real-time imaging, vol. 9 (2003), no. 5, pp.321-46.
Google Scholar
[5]
Ghahramani, Z. Learning dynamic Bayesian networks. Adaptive Processing of Sequences and Data Structures, 1998, p.168.
Google Scholar
[6]
Baum, L.E. & Sell, G. Growth functions for transformations on manifolds', Pac. J. Math, vol. 27 (1968), no. 2, pp.211-27.
Google Scholar
[7]
Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), vol. 39 (1977), no. 1, pp.1-38.
DOI: 10.1111/j.2517-6161.1977.tb01600.x
Google Scholar
[8]
Forney Jr, G.D. The viterbi algorithm. Proceedings of the IEEE, vol. 61 (1973), no. 3, pp.268-78.
Google Scholar
[9]
Johnson, S.C. Hierarchical clustering schemes. Psychometrika, vol. 32 (1967), no. 3, pp.241-54.
Google Scholar
[10]
Luxburg, U. A tutorial on spectral clustering. Statistics and Computing, vol. 17 (2007), no. 4, pp.395-416.
DOI: 10.1007/s11222-007-9033-z
Google Scholar
[11]
Smyth, P. Clustering sequences with hidden Markov models. Advances in Neural Information Processing Systems, vol. 9 (1997), Denver, CO, USA, pp.648-54.
Google Scholar
[12]
Oates, T., Firoiu, L. & Cohen, P.R. Clustering time series with hidden markov models and dynamic time warping. Proceedings of the IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, Citeseer (1999).
DOI: 10.1007/3-540-44565-x_3
Google Scholar
[13]
Alon, J., Sclaroff, S., Kollios, G. & Pavlovic, V. Discovering clusters in motion time-series data. paper presented to the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003).
DOI: 10.1109/cvpr.2003.1211378
Google Scholar
[14]
Garcia-Garcia, D., Hernandez, E.P. & Diaz de Maria, F. A new distance measure for model-based sequence clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31 (2009), no. 7, pp.1325-31.
DOI: 10.1109/tpami.2008.268
Google Scholar
[15]
Jebara, T., Song, Y. & Thadani, K. Spectral clustering and embedding with hidden Markov models. Machine Learning: ECML 2007, pp.164-75.
DOI: 10.1007/978-3-540-74958-5_18
Google Scholar
[16]
Panuccio, A., Bicego, M. & Murino, V. A Hidden Markov Model-Based Approach to Sequential Data Clustering, Springer-Verlag, pp.734-42. (2002).
DOI: 10.1007/3-540-70659-3_77
Google Scholar
[17]
Yin, J. & Yang, Q. Integrating hidden Markov models and spectral analysis for sensory time series clustering. Proceedings of the Fifth IEEE International Conference on Data Mining, Houston, Texas, USA, pp.8-15. (2005).
DOI: 10.1109/icdm.2005.82
Google Scholar
[18]
García-García, D., Hernandez, E. & Diaz-de-Maria, F. State-space dynamics distance for clustering sequential data. Pattern Recognition, vol. 44 (2011), pp.1014-22.
DOI: 10.1016/j.patcog.2010.11.018
Google Scholar
[19]
Bicego, M., Murino, V. & Figueiredo, M. Similarity-based clustering of sequences using hidden Markov models. Lecture Notes in Computer Science, vol. 2734(2003), pp.95-104.
DOI: 10.1007/3-540-45065-3_8
Google Scholar