Two Conversion Formulas of Known Optimal Sequences

Article Preview

Abstract:

This paper investigates the construction methods of sequences with optimal autocorrelation functions. The approaches proposed by us are to convert the known optimal sequences into the required sequences. In order to arrive at our goal, we establish two conversion formulas, and summarize their performance. The proposed methods can provide lots of candidates of spread sequences for the applications of code-division multiple-access (CDMA) spread spectrum communication systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2012-2015

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. P. Ipatov, Spread spectrum and CDMA: principles and applications (John Wiley & Sons, Ltd. 2005).

Google Scholar

[2] S. W. Golomb and G. Gong, Signal design for good correlation, for wireless communication, cryptography, and radar (Cambridge University Press 2005).

DOI: 10.1017/cbo9780511546907

Google Scholar

[3] P. Z. Fan and M. Darnell, Sequence design for communications applications (John Wiley & Sons Inc. 1996).

Google Scholar

[4] X. H. Tang and G. Gong, New constructions of binary sequences with optimal autocorrelation value/magnitude, IEEE Trans. on Inf. Theory Vol. 56 (2010), pp.1278-1286.

DOI: 10.1109/tit.2009.2039159

Google Scholar

[5] X. H. Tang and C. S. Ding, New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value, IEEE Trans. on Inf. Theory, Vol. 56 (2010), pp.6398-6405.

DOI: 10.1109/tit.2010.2081170

Google Scholar

[6] F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G.X. Xuan, Optimal quaternary sequences derived from optimal binary sequences with odd length, Proc. of IEEE IWSDA2011, Guilin, China, Oct. 10-14, 2011, pp.80-83.

DOI: 10.1109/iwsda.2011.6159446

Google Scholar

[7] F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, 8-QAM+ periodic complementary sequence sets, IEEE Commun. Lett., Vol. 16 (2012), pp.83-85.

DOI: 10.1109/lcomm.2011.103111.111564

Google Scholar

[8] X. H. Tang and J. Lindner, Almost quadriphase sequences with ideal autocorrelation property, IEEE Signal Processing Lett., Vol. 16(2009), pp.38-40.

DOI: 10.1109/lsp.2008.2009371

Google Scholar

[9] H. ~D. Lüke, H. D. Schotten, and H. Madinejad-Mahram, Binary and quadriphase sequences with optimal autocorrelation properties: A survey, IEEE Trans. on Inf. Theory, Vol. 49(2003), pp.3271-3282.

DOI: 10.1109/tit.2003.820035

Google Scholar

[10] F. X. Zeng and L. J. Ge, Principles of sequence design for wireless communications (in Chinese) (National Defense Industry Press, 2007, ISBN 7-118-04819-4).

Google Scholar

[11] S. Boztas and P. Udaya, Nonbinary sequences with perfect and nearly perfect autocorrelations, Proc. of the IEEE ISIT, Austin, Texas, 2010, pp.1300-1304.

DOI: 10.1109/isit.2010.5513729

Google Scholar

[12] X. P. Peng and C. Q. Xu, New constructions of perfect Gaussian integer sequences of even length, IEEE Commun. Lett., Vol. 18 (2014), pp.1547-1550.

DOI: 10.1109/lcomm.2014.2336840

Google Scholar

[13] F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, Several types of sequences with optimal autocorrelation, IEICE Trans. Fundamental, Vol. E96-A(2013), pp.367-372.

DOI: 10.1587/transfun.e96.a.367

Google Scholar

[14] F. X. Zeng, X. P. Zeng, X. Y. Zeng, Z. Y. Zhang, and G. X. Xuan, Perfect 8-QAM+ sequences, IEEE Wireless Commun. Lett., Vol. 1 (2012), pp.388-391.

DOI: 10.1109/wcl.2012.053112.120319

Google Scholar