Adaptive Control Approaches for Nonlinear Systems: Retrospect and Prospects

Article Preview

Abstract:

This paper discusses the state-of-art of adaptive control approaches for nonlinear systems to date and presents a new classification framework, in which the existing adaptive control approaches can be broadly classified into two categories: model-driven methods and data-driven methods. The principle, main research progress, and inherent problems of these methods are reviewed. Finally, some practical considerations and future directions are also briefly explored and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

336-345

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chai Tian-You, Challenges of Optimal Control for Plant-wide Production Processes in Terms of Control and Optimization Theories, Acta Automatica Sinica. 35(6) (2009) 641-649.

DOI: 10.3724/sp.j.1004.2009.00641

Google Scholar

[2] Hou Zhong-Sheng, Xu, Jian-Xin, On Data-driven Control Theory: the State of the Art and Perspective. Acta Automatica Sinica. 35(6) (2009)650-667.

DOI: 10.3724/sp.j.1004.2009.00650

Google Scholar

[3] Anderson B D, Dehghani A, Challenges of adaptive control-past, permanent and future. Annual Reviews in Control. 32(2008)123-135.

DOI: 10.1016/j.arcontrol.2008.06.001

Google Scholar

[4] Sun Fu-chun, LI Li, SUN Zeng-qi, Survey on adaptive control of nonlinear systems using neural networks, Control Theory & Applications. 22(2)( 2005) 254-260.

Google Scholar

[5] Hou Zhong-Sheng, On model-free adaptive control: the State of the Art and Perspective, Control Theory & Applications. 23(4) (2006) 586-592.

Google Scholar

[6] Gibson J., Nonlinear automatic control, New York, NY: McGraw-Hill, (1962).

Google Scholar

[7] Truxal T G, Adaptive control, Automatic and Remote Control, Munich, FRG: Butterworths and Oldenbourg, Broda Ed., 1964, pp.386-392.

Google Scholar

[8] Saridis G N, Mendel J M, Nikolic Z Z, Report on definitions of self-organizing control processes and learning systems, IEEE Contr. Syst. Soc. Newsletter, Spring, (1973).

Google Scholar

[9] Astrom K J, Theory and applications of adaptive control-A survey, Automatica, 19(5)( 1983)471-486.

Google Scholar

[10] Astrom K J, Adaptive feedback control, Proc. IEEE. 75(2) (1987)185-217.

Google Scholar

[11] Astrom K J, Adaptive control around 1960, IEEE Control Systems Magazine. 16(3) (1996)44-49.

DOI: 10.1109/37.506397

Google Scholar

[12] Astrom K J, Hugglund T, Automatic tuning of simple regulators with specifications on phase and amplitude margins, Automatics. 20(5) (1984)645-651.

DOI: 10.1016/0005-1098(84)90014-1

Google Scholar

[13] Astrom K J, Hang C C, Towards intelligent PID control, Automatics. 28(1) (1992)1-9.

Google Scholar

[14] Astrom K J, Wittenmark B, Adaptive Control. Bosr_on: Addison-Wesley Longman Publishing Co. (1995).

Google Scholar

[15] Astrom K J, Wittenmark B, A survey of adaptive control applications. Decision and Control, Proceedings of the 34th IEEE Conference on. 1 (1995)649-654.

DOI: 10.1109/cdc.1995.478986

Google Scholar

[16] Zhang Y, Chen W H, Improved robust backstepping adaptive control for nonlinear discrete-time systems without overparameterization, Automatica. 44(3)( 2008 )864-867.

DOI: 10.1016/j.automatica.2007.07.015

Google Scholar

[17] Long F, Fei S M, Fu Z M, Zheng S Y, Adaptive neural network control for switched system with unknown nonlinear part by using backstepping approach: SISO case, Advances in Neural Networks. (2006)842-848.

DOI: 10.1007/11760023_125

Google Scholar

[18] Su C Y, Wang Q, Chen X. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-lshlinskii hysteresis, IEEE Transactions on Automatic Control. 50(12) (2005)2069-(2074).

DOI: 10.1109/tac.2005.860260

Google Scholar

[19] Huang A C, Kuo Y S, Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds, International Journal of Control. 74(3) (2001)252-264.

DOI: 10.1080/00207170010003441

Google Scholar

[20] Huang A C, Chen Y C, Adaptive sliding control for single-link flexible point robot with mismatched uncertainties, IEEE Transactions on Control Systems Technology. 12(5) (2004)770-775.

DOI: 10.1109/tcst.2004.826968

Google Scholar

[21] Huang A C, Chen Y C, Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties, Automatica. 40(11) (2004)1939-(1945).

DOI: 10.1016/j.automatica.2004.06.007

Google Scholar

[22] Tong S C, Li H X, Fuzzy adaptive sliding-mode control for MIMO nonlinear systems, IEEE Transactions on Fuzzy Systems. 11(3)( 2003)354-360.

DOI: 10.1109/tfuzz.2003.812694

Google Scholar

[23] Zhang G Q, Wu H X, An all-coefficient adaptive control method for a class of nonlinear time-varying systems, Science in China Series F: Information Science. 52(10) (2009)1730-1738.

DOI: 10.1007/s11432-009-0176-8

Google Scholar

[24] Murlidhar G M, Jana A K, Nonlinear adaptive control algorithm for a multi component batch distillation column, Chemical Engineering Science. 62(4)( 2007) 1111-1124.

DOI: 10.1016/j.ces.2006.11.006

Google Scholar

[25] Yu N, Ma W, Application of adaptive Grey predictor based algorithm to boiler drum level control, Energy Conversion and Management. 47(18-19)( 2006)2999-3007.

DOI: 10.1016/j.enconman.2006.03.035

Google Scholar

[26] Smets L Y, Claes J E, Optimal adaptive control of (bio) chemical reactors: past present and future, Journal of Process Control. 14(7) (2004)795-805.

DOI: 10.1016/j.jprocont.2003.12.005

Google Scholar

[27] Boling J M, Seborg D E, Mufti-model adaptive control of a simulated pH neutralization process, Control Engineering Practice. 15(6) (2007)663-672.

DOI: 10.1016/j.conengprac.2006.11.008

Google Scholar

[28] Kim D, Park J, Application of adaptive control to the fluctuation of engine speed at idles, Information Sciences. 177(16)( 2007)3341-3355.

DOI: 10.1016/j.ins.2006.12.021

Google Scholar

[29] Whitaker H P, Yamron J, Kerzer A, Design of model reference adaptive control system for aircraft, Cambridge Massachusetts: Instrumentation Laboratory, MIT(1958).

Google Scholar

[30] Patino H D, Liu D, Neural Network-Based Model Reference Adaptive Control System, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics. 30(1) (2000)198-204.

DOI: 10.1109/3477.826961

Google Scholar

[31] Liu X J, Rosano F L, Chan C W, Model-Reference Adaptive Control Based on Neurofuzzy Networks, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews. 34(3) (2004)302-309.

DOI: 10.1109/tsmcc.2003.819702

Google Scholar

[32] J. Paulo V S, Cunha, Liu H, Ramon R, Lizarralde F, Output-Feedback Model-Reference Sliding Mode Control of Uncertain Multivariable Systems, IEEE Transactions on Automatic Control. 48(12)( 2003)2245-2250.

DOI: 10.1109/tac.2003.820156

Google Scholar

[33] Barabanov N, Omega R, Astolfi A, Is Normalization Necessary for Stable Model Reference Adaptive Control? IEEE Transactions on Automatic Control. 50(9) (2005)1384-1390.

DOI: 10.1109/tac.2005.854625

Google Scholar

[34] Zhou D Y, and DeBrunner V, Efficient Adaptive Nonlinear Filters for Nonlinear Active Noise Control, IEEE Transactions on Circuits and Systems-I. 54(3)( 2007) 669-681.

DOI: 10.1109/tcsi.2006.887636

Google Scholar

[35] Beyer M A, Grote W, Reinig G, Adaptive exact linearization control of batch polymerization reactors using a Sigma-Point Kalman Filter, Journal of Process Control. 18(2008)663-675.

DOI: 10.1016/j.jprocont.2007.12.002

Google Scholar

[36] Zhu Q, Zhang T P, Fei S M, Zhang K J, Li T, Adaptive neural control for a class of output feedback time delay nonlinear systems, Neurocomputing. 72(2009)1985-(1992).

DOI: 10.1016/j.neucom.2008.12.023

Google Scholar

[37] Pan F, Han R C, Review the Control Schemes for Time-varying Large Time-delay System, Chinese Journal of Scientific Instrument. 23(3)789-791.

Google Scholar

[38] Yang Z J, Kunitoshi K, Kanae S, Wada K, Adaptive Robust Output-Feedback Control of a Magnetic Levitation System by K-Filter Approach. IEEE Transactions on Industrial Electronics. 55(1)( 2008)390-399.

DOI: 10.1109/tie.2007.896488

Google Scholar

[39] Szabat K, Orlowska-Kowalska T, Dybkowski M, Indirect adaptive control of induction motor drive system with an elastic coupling, IEEE Transactions on Industrial Electronics. 56(10)( 2009) 4038-4042.

DOI: 10.1109/tie.2009.2022514

Google Scholar

[40] S. Narendra K, Cheng X, Adaptive control of discrete-time systems using multiple models, IEEE Transactions on Automatic Control. 45(9)( 2000)1669-1689.

DOI: 10.1109/9.880617

Google Scholar

[41] S. Narendra K, Balakrishnan J, Adaptive Control Using Multiple Models. IEEE Transactions on Automatic Control. 42(2)( 1997)171-187.

DOI: 10.1109/9.554398

Google Scholar

[42] Ye X D, Nonlinear adaptive control using multiple identification models, Systems & Control Letters. 57(2008)578-584.

DOI: 10.1016/j.sysconle.2007.12.007

Google Scholar

[43] Zhang P, Yang X, Neural network gain scheduling design for large envelope curve flight control law, Journal of Beijing University of Aeronautics and Astronautics. 31(6) (2005)604-608.

Google Scholar

[44] Abdelaziz M, Ghedjati K, Model reference adaptive control for linear time varying and nonlinear systems using virtual linearization, Proceedings of the 7th Conference on 7th WSEAS International Conference on Systems Theory and Scientific Computation. 7(2007).

Google Scholar

[45] Nouri K, Dhaouadi R, Braiek N B, Adaptive control of a nonlinear do motor drive using recurrent neural networks, Applied Soft Computing. 8 (2008)371-382.

DOI: 10.1016/j.asoc.2007.03.002

Google Scholar

[46] Zou A M, Hou Z G, Tan M, Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach, IEEE Transactions on Fuzzy Systems. 16(4)(2008)886-897.

DOI: 10.1109/tfuzz.2008.917301

Google Scholar

[47] Liu Y J, Tong S C, Wang W, Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems, Fuzzy Sets and Systems. 160(2009)2727-2754.

DOI: 10.1016/j.fss.2008.12.016

Google Scholar

[48] Golea N, Golea N, Benmahammed K, Fuzzy model reference adaptive control, IEEE Transactions on Fuzzy Systems. 10(4) (2002)436-444.

DOI: 10.1109/tfuzz.2002.800694

Google Scholar