Optimal Modified Tracking Performance of Linear Single-Input Multiple-Output Control Systems

Article Preview

Abstract:

In this paper, the optimal modified performance of the single-input multiple-output (SIMO) linear time-invariant (LTI) systems is investigated. The performance bound is related to the scaled factor, the inner factor of the plant and the spectral density of the reference signal. The output dimension also plays an important role. The strong restrictions of the directions for the reference signal and the assumption that the plant must have an integrator in the existing conclusions are not necessary. Also the modified performance index overcomes the invalidity when the state error is not zero vectors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

393-399

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Ding, H. -N. Wang, Z. -H. Guan, and J. Chen, Tracking under additive white Gaussian noise effect, IET Control Theory & Applications, 4(11) (2010) 2471–2478.

DOI: 10.1049/iet-cta.2009.0449

Google Scholar

[2] X. -S. Zhan, Z. -H. Guan, R. -Q. Rui and F. -S. Yuan, Optimal performance In tracking stochastic signal under disturbance rejection, Asian Journal of Control, 14(6) (2012) 1608–1616.

DOI: 10.1002/asjc.494

Google Scholar

[3] G. Goodwin, E. Silva, E. Quevedo, Analysis and design of networked control systems using the additive noise model methodology, Asian Journal of Control, 12(4) (2010) 443–459.

DOI: 10.1002/asjc.201

Google Scholar

[4] X. -W. Jiang, Z. -H. Guan, G. Feng, Y. -H. Wu, F. -S. Yuan, Optimal Tracking Performance of Networked Control Systems under Channel Input Power Constraint, IET Control Theory and Applications, 14(6) (2012) 1608–1616.

DOI: 10.1049/iet-cta.2011.0329

Google Scholar

[5] T. Bakhtiar and S. Hara, H2 regulation performance limitations for SIMO linear time-invariant feedback control systems, Automatica, 44(3) (2008) 659–670.

DOI: 10.1016/j.automatica.2007.07.002

Google Scholar

[6] G. Chen, J. Chen, and R. H. Middleton, Optimal tracking performance for SIMO systems, IEEE Transactions on Automatic Control, 47(10) (2002) 1770–1775.

DOI: 10.1109/tac.2002.803559

Google Scholar

[7] S. Hara, T. Bakhtiar, and M. Kanno, The best achievable H2 tracking performances for SIMO feedback control systems, Journal of Control Science and Engineering, vol. Article ID 93904, p.12 pages, (2007).

DOI: 10.1155/2007/93904

Google Scholar

[8] P. E. Valenzuela, M. E. Salgado, and E. I. Silva, Performance bounds for SIMO and squared-up plant models, in 19th Mediterranean Conference on Control and Automation, Aquis Corfu Holiday Palace, Corfu, Greece, 2011, p.102–107.

DOI: 10.1109/med.2011.5983029

Google Scholar

[9] J. Chen, S. Hara, and G. Chen, Best tracking and regulation performance under control energy constraint, IEEE Transactions on Automatic Control, 48(8) (2003) 1320–1336.

DOI: 10.1109/tac.2003.815012

Google Scholar

[10] Y. -Q. Li, E. Tuncel, and J. Chen, Optimal tracking over an additive white Gaussian noise channel, in Proceedings of the 2009 American Control Conference, St. Louis, Missouri, USA, 2009, p.4026–4031.

DOI: 10.1109/acc.2009.5160637

Google Scholar

[11] M. A. Garcia, M. E. Salgado, and E. I. Silva, Achievable performance bounds for tall MIMO systems, IET Control Theory and Applications, 5(5) (2011) 736–743.

DOI: 10.1049/iet-cta.2010.0328

Google Scholar

[12] J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg, Feedback stabilization over signal-to-noise ratio constrained channels, IEEE Transactions on Automatic Control, 52(8) (2007) 1391–1403.

DOI: 10.1109/tac.2007.902739

Google Scholar

[13] B. A. Francis, A Course in H∞ Control Theory, Springer-Verlag, Berlin, Germanny, (1987).

Google Scholar