Numerical Simulations and Experiments on Changes in Erythrocyte Morphology under Continue Flow Ventricular Assisted Devices

Article Preview

Abstract:

Ventricular assist devices (VADs) implanted in human body produce different levels of shear stress due to mechanical structure, causing damage for erythrocytes. The study is focusing on the morphology changes of erythrocytes causing by continue flow VADs. This study used a Hemodynamic Shearing Device (Thermo Electron Corporation) to expose erythrocytes to shear stress produced by VADs. Then free hemoglobin of plasma is measured and blood smears are respectively made to count the number of abnormal erythrocytes. The results show that the correlation coefficient of the percent of abnormal erythrocytes (PAE) and shear stress is 0.725 (p=0.027, <0.05). After blood shearing experiments the number of abnormal erythrocytes has increased with shear stress under constant exposure time, and both shear stress and exposure time contribute to morphology changes in erythrocytes. The conclusion indicates that low shear stress (lower than 450 Dynes/cm2) damage of erythrocyte is an important factor in the application of VADs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-149

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Jorn, P. Reinhard, K. Sebastian et al: Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artificial Organs Vol. 25(2001), pp.341-347.

DOI: 10.1046/j.1525-1594.2001.025005341.x

Google Scholar

[2] G.A. Giridharan, A. Michael. M.A. Sobieski et al: Blood trauma testing for mechanical circulatory support devices. Biomed Instrum Technol Vol. 45(2011), pp.334-339.

DOI: 10.2345/0899-8205-45.4.334

Google Scholar

[3] A. Aziz and B.C. WERNER: The cumulative and sublethal effects of turbulence on erythrocytes in a stirred-tank model. Ann Biomed Eng Vol. 35(2007), pp.2108-2120.

DOI: 10.1007/s10439-007-9387-6

Google Scholar

[4] N. Watanabe and Y. Arakawa: Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator. Physiol. Meas Vol. 28(2007), pp.531-545.

DOI: 10.1088/0967-3334/28/5/007

Google Scholar

[5] O.K. Baskurt, M. Uyuklu and H.J. Meiselman: Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage. Biorheology Vol. 41(2004), pp.79-89.

Google Scholar

[6] M. KODÍČEK, J. SUTTNAR, L. MIRČEVOVÁ et al: Red blood cells under mechanical stress. Gen. Physiol. Biophys Vol. 9(1990), pp.291-299.

Google Scholar

[7] B.N. NANJAPPA, H.K. CHANG and C.A. GLOMSKI: Trauma of the erythrocyte membrane associated with low shear stress. Biophysical journal Vol. 13(1973), pp.1212-1222.

DOI: 10.1016/s0006-3495(73)86056-4

Google Scholar

[8] M.K. AMENEVA, P.F. MARAD and M. JAMES: In vitro evaluation of hemolysis and sublethal blood trauma in a novel subcutaneous vascular access system for hemodialysis. ASAIO Journal Vol. 48(2002), pp.34-38.

DOI: 10.1097/00002480-200201000-00008

Google Scholar

[9] M. Mehrdad, K. Jeongho and F.A. James: Modeling and numerical simulation of blood flow using the theory of interacting continua. International Journal of Non-Linear Mechanics Vol. 47(2012), pp.506-520.

DOI: 10.1016/j.ijnonlinmec.2011.09.025

Google Scholar

[10] Y. Alemu and D. Bluestein: Flow-induced platelet activation and damage accumulation in a mechanical heart valve Numerical studies. Artificial Organs Vol. 31(2007), pp.677-688.

DOI: 10.1111/j.1525-1594.2007.00446.x

Google Scholar

[11] Y.J. Xuan, Y. Chang, K.Y. Gu et al: Hemodynamic simulation study of a novel intra-aorta left ventricular assist device. ASAIO Journal Vol. 58(2012), pp.462-469.

DOI: 10.1097/mat.0b013e318268eaf7

Google Scholar

[12] B. Gao, K.Y. Gu, Y. Zeng et al: A blood assist index control by intraaorta pump: a control strategy for ventricular recovery. ASAIO Journal Vol. 57(2011), pp.358-362.

DOI: 10.1097/mat.0b013e3182257fac

Google Scholar

[13] X.W. Song: Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artificial Organs Vol. 27(2003), pp.938-941.

DOI: 10.1046/j.1525-1594.2003.00026.x

Google Scholar

[14] R.A. Malinauskas: Plasma hemoglobin measurement techniques for the in vitro evaluation of blood damage caused by medical devices. Artificial Orgaris Vol. 21(1997), pp.1255-1267.

DOI: 10.1111/j.1525-1594.1997.tb00486.x

Google Scholar

[15] K.Y. Gu, Y. Chang, B. Gao et al: Lumped Parameter Model for Heart Failure with Novel Regulating Mechanisms of Peripheral Resistance and Vascular Compliance. ASAIO Journal, Vol. 58(2012), pp.223-231.

DOI: 10.1097/mat.0b013e31824ab695

Google Scholar

[16] A. Mitoh, T. Yano, K. Sekine et al: Computational Fluid Dynamics Analysis of an Intra-Cardiac Axial Flow Pump. Artificial Organs Vol. 27(2003), p.34–40.

DOI: 10.1046/j.1525-1594.2003.07190.x

Google Scholar