Preparation and Properties for Solid Solution Ce0.8Pr0.2-xSmxO2-δ(x=0.02, 0.05, 0.1)

Article Preview

Abstract:

Ce0.8Pr0.2-xSmxO2-δ(x=0.02, 0.05, 0.1) solid solutions were synthesized by the sol-gel method. The XRD results show that all powders calcined at 800 °C are crystallized in a single cubic fluorite structure. The average grain sizes are between 19 nm and 28 nm. The Raman spectra analysis reveals that the solid solution Ce0.8Pr0.2-xSmxO2-δ has a cubic fluorite structure with oxygen vacancies. The oxygen vacancy concentration is increased by doping Sm in Ce0.8Pr0.2-xSmxO2-δ. Impedance spectra shows that the conductivity of rare earth co-doped ceria Ce0.8Pr0.15Sm0.05O2-δ is higher than that of single rare earth doped ceria Ce0.83Sm0.17O2-y. The results also show that Ce0.8Pr0.15Sm0.05O2-δ possess maximum conductivity. At 600 °C, the conductivity is 1.20×10-2S/cm, which is assigned to the higher oxygen vacancy concentration and the hopping electron transition of small polarons in the sample Ce0.8Pr0.15Sm0.05O2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

596-600

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Mori, J. Drennan, J.H. Lee, J.G. Li, T. Ikegami, Solid State Ionics154–155(2002)461–466.

Google Scholar

[2] S. Tsunekawa, T. Fukuda, A. Kasuya, Surface Science Letters 457(2000)437–440.

Google Scholar

[3] S. Bosˇ kovic´, S. Zec, G. Brankovic´, Z. Brankovic´, A. Devecˇerski, B. Matovic´, F. Aldinger, Ceramics International 36 (2010) 121–127.

Google Scholar

[4] H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1–16.

Google Scholar

[5] H. Yahiro, K. Eguchi, H. Arai, Solid State Ionics 36 (1989) 71–75.

Google Scholar

[6] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics 52 (1992) 165–172.

DOI: 10.1016/0167-2738(92)90102-u

Google Scholar

[7] J.V. Herle, D. Seneviratne, A.J. McEvoy, J. Eur. Ceram. Soc. 19 (1999) 837–841.

Google Scholar

[8] T. Mori, J. Drennan, J.H. Lee, J.G. Li, T. Ikegami, Solid State Ionics 154/155 (2002)461–466.

Google Scholar

[9] Y.F. Zheng, H.T. Gu, H. Chen, L. Gao, X.F. Zhu, L.C. Guo, Mater. Res. Bull. 44 (2009)775–779.

Google Scholar

[10] X.Q. Sha, Z. Lu, X.Q. Huang, J.P. Miao, Z.H. Ding, X.S. Xin, W.H. Su, J. Alloys Compd. 428 (2007) 59–64.

Google Scholar

[11] F.Y. Wang, S.Y. Chen, Q. Wang, S.X. Yu, S.F. Cheng, Catal. Today 97 (2004)189–194.

Google Scholar

[12] Y.F. Zheng, Y.M. Shi, H.T. Gu, L. Gao, H. Chen, L.C. Guo, Mater. Res. Bull. 44 (2009) 1717–1721.

Google Scholar

[13] B.C.H. Steele, Solid State Ionics 129 (2000) 95–110.

Google Scholar

[14] M. Mogensen, N.M. Sammes G.A. Tompsett, Solid State Ionics 129 (2000) 63–94.

Google Scholar

[15] J.R. McBride, K.C. Hass, B.D. Poindexter, W.H. Weber, Appl. Phys. 76 (1994) 2435.

Google Scholar

[16] R. Gerhardt, A.S. Nowick, Am. Ceram. Soc. 69 (1986) 641.

Google Scholar

[17] H. Inaba, H. Tagawa, Solid State Ionics 38 (1996) 439.

Google Scholar

[18] W. Huang, P. Shuk, M. Greenblatt, Chem. Mater. 9 (1997) 2240.

Google Scholar

[19] G.B. Balazs, R.S. Glass, Solid State Ionics 76 (1995) 155.

Google Scholar

[20] W. Huang, P. Shuk, M. Greenblatt, Solid State Ionics 113–115 (1998) 305.

Google Scholar