Study on Tower Vibration Characteristic of 3-Rotor HAWT System

Article Preview

Abstract:

Multi-Rotor Horizontal Axis Wind Turbine (MR-HAWT) system with three 2kW Horizontal Axis Wind Turbines (HAWTs) is the research object. After some appropriate simplifications, the finite element model is established and verified by experiments. The vibration characteristic of the tower under rotors’ periodic excitations is studied through transient analysis method and compared with 6kW single-rotor HAWT system. The result shows that the maximum stress of the 3-Rotor Horizontal Axis Wind Turbine (3R-HAWT) system is less than the single-rotor HAWT, so the safety of the 3R-HAWT system is superior to the single-rotor HAWT system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-237

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.T. Thomsen: Journal of Sandwich Structures and Materials, Vol. 11 (2009), p.7.

Google Scholar

[2] A. Mostafaeipour: Renewable and Sustainable Energy Reviews, Vol. 14 (2010) , pp.1048-1058.

Google Scholar

[3] C. Gebhardt, S. Preidikman and J. Massa: International Journal of Hydrogen Energy, Vol. 35 (2010), p.6005.

Google Scholar

[4] M. Liserre, R. Cardenas, M. Molinas and J. Rodriguez: IEEE Transactions on Industrial Electronics, Vol. 58 (2011), p.1081.

Google Scholar

[5] K. L. Friesth, F. Dodge, U.S. Patent 8, 668, 433. (2008).

Google Scholar

[6] Li. Zhu, Yiping. Wang and Qunwu. Huang, China Patent 201110241037.X. (2013) [in Chinese].

Google Scholar

[7] E. Mollasalehi, Q. Sun and W. David: Energies, Vol. 6 (2013), p.3669.

Google Scholar

[8] P. Jamieson, M. Branney: Energy Procedia, Vol. 24 (2012), p.52.

Google Scholar

[9] J. S. Christopher, K. T. Judith: IEEE Transactions on Control Systems Technology, Vol. 21 (2013), p.1049.

Google Scholar

[10] P. Guo, D. Infield: Energies, Vol. 5(2012), p.5279.

Google Scholar

[11] H. J. Sutherland: Journal of Solar Energy Engineering, Vol. 118(1996), p.204.

Google Scholar

[12] J. S. Chou, C. K. Chiu, I. K. Huang, et al: Engineering Failure Analysis, Vol. 27(2013), p.99.

Google Scholar

[13] K. Freudenreich, K. Argyriadi: Wind Energy, Vol. 11 (2008), p.589.

Google Scholar

[14] J. P. Zhang, D. L. Li, Y. Han, et al: Journal of Vibroengineering, Vol. 15 (2013), p.1597.

Google Scholar

[15] M. A. Lackner, K. Van and A. M. Gijs: Journal of Solar Energy Engineering, Vol. 132(2010), p.0110081.

Google Scholar

[16] P. Moriarty: Wind Energy, Vol. 11 (2008), p.601.

Google Scholar

[17] H. M. Negm, K. Y. Maalawi: Computers and Structures, Vol. 74 (2000), p.649.

Google Scholar

[18] I. Chowdhury, S. P. Dasgupta: The Electronic Journal of Geotechnical Engineering, 2003, p.8.

Google Scholar

[19] T. Ackermann, L. Söder: Renewable and Sustainable Energy Reviews, Vol. 4 (2000), p.315.

Google Scholar