[1]
Potts, R. B., Oliver, R. M. Flows in Transportation Networks (1972). Academic Press, 201p.
Google Scholar
[2]
Masao, I. Network Flow, Transportation and Scheduling (1969) Academic Press, 308 p.
Google Scholar
[3]
Schadschneider, A., Chowdhury, D., Nishinari, K. Stochastic transport in complex systems (2011) Elsevier Science, pp.17-23.
Google Scholar
[4]
Yue, W. L., Young, W. An Introduction Of A Parking Design And Simulation Model (2010) Joumal of the Eastem Asia Society for Transportation Studies, Vol. 2, No' 2, pp.27-34.
Google Scholar
[5]
Haight, F. A. Mathematical theories of traffic flow (1963) Academic Press, 287 p.
Google Scholar
[6]
Kerner. B. S. Introduction to Modern Traffic Flow Theory and Control (2009) Springer, 354 p.
Google Scholar
[7]
Yamamoto, K., Kokubo, S., Nishinari, K. New approach for pedestrian dynamics by real-coded cellular automata (RCA) (2009) in: El Yacoubi et al., 728 p.
DOI: 10.1007/11861201_89
Google Scholar
[8]
Woensel, T. V., Vandaele, N. Modeling traffic flows with queueing models (2007) Springer 435 p.
Google Scholar
[9]
Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. Pedestrian and Evacuation Dynamics (2005), Springer, 319 p.
DOI: 10.1007/978-3-540-47064-9
Google Scholar
[10]
Tilch, B., Helbing, D. Evaluation of single vehicle data in dependence of the vehicle-type, lane, and site (2001) Helbing, 333 p.
DOI: 10.1007/978-3-642-59751-0_31
Google Scholar
[11]
Belbasi, S., Foulaadvand, M.E., Simulation of traffic flow at a signalized intersection (2008) Springer, 174 p.
Google Scholar
[12]
Ben-Naim, E., Krapivsky, P.L., Steady state properties of traffic flows (1998) Academic Press, 365 p.
Google Scholar
[13]
Bham, G. H., Benekohal, R.F., A high fidelity traffic simulation model based on cellular automata and car-following concepts (2004) Transp. Res., No. 12, pp.24-31.
DOI: 10.1016/j.trc.2002.05.001
Google Scholar
[14]
Boccara, N., Modeling Complex Systems (2004) Springer, 412 p.
Google Scholar
[15]
Burgers, J.M., The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems (1974) Reidel, 297 p.
Google Scholar
[16]
Chakroborty, P., Models of vehicular traffic: an engineering perspective (2006) Physica, 206 p.
Google Scholar
[17]
Chowdhury, D., Nishinari, K., Schadschneider, A. Modeling of Complex Systems Using Cellular Automata (2010) Springer, 275 p.
Google Scholar
[18]
Daganzo, C.F., Cassidy, M.J., Bertini, R.L., Possible explanations of phase transitions in highway traffic, (1998) Transp. Res., No. 8, pp.42-49.
Google Scholar
[19]
Derrida, B. An exactly soluble non-equilibrium system: the asymmetric simple exclusion process (1998) Physica, 167 p.
DOI: 10.1016/s0370-1573(98)00006-4
Google Scholar
[20]
Ebersbach, A., Schneider, J. Two-lane traffic with places of obstruction to traffic (2004) Springer, 535 p.
Google Scholar