Increasing the Wind Turbine Power Using Aerodynamics Shape of the Building

Article Preview

Abstract:

Energy saving techniques including the use of alternative energy sources become more and more popular. One of the alternative energy sources is wind. Wind turbines are highly relevant in the areas of wind (such as coasts). This paper proposes a method of increasing the power of wind turbine due to architectural solutions such as streamlining facade by the example of the school. The calculations of the real increase in wind speed and power of the selected wind turbine have been promoted. The payback period graphs of the unit have been discovered in two variants (with changing the façade and without changing the facade). The economic impact has been analyzed. It has been concluded that the proposed scheme is profitable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1456-1462

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Elistratov, V.V., Knežević, M., Denisov, R., Konishchev, M. Problems of constructing wind-diesel power plants in harsh climatic conditions (2014) Journal of Applied Engineering Science, Vol. 12, No. 1, pp.29-36.

DOI: 10.5937/jaes12-5632

Google Scholar

[2] Bolshakov, N.S., Krivoy, S.A., Rakova, X.M. The comfort in all respects, principle implementation by the example of an elementary school (2014) Advanced Materials Research, 941-944, pp.895-900.

DOI: 10.4028/www.scientific.net/amr.941-944.895

Google Scholar

[3] Fidrikova, A.S., Grishina, O.S., Marichev, A.P., Rakova, X.M. Energy-efficient technologies in the construction of school in hot climates (2014) Applied Mechanics and Materials, 587-589, pp.287-293.

DOI: 10.4028/www.scientific.net/amm.587-589.287

Google Scholar

[4] Vuksanovic, D., Murgul, V., Vatin, N., Aronova, E. Shadowing impact on amount of power generated by photovoltaic modules (2014) Applied Mechanics and Materials, 587-589, pp.342-347.

DOI: 10.4028/www.scientific.net/amm.587-589.342

Google Scholar

[5] Alihodzic, R., Murgul, V., Vatin, N., Aronova, E., Nikolić, V., Tanić, M., Stanković, D. Renewable Energy Sources used to Supply Pre-school Facilities with Energy in Different Weather Conditions (2014).

DOI: 10.4028/www.scientific.net/amm.624.604

Google Scholar

[6] Radovic, G., Murgul, V., Vatin, N., Aronova, E. Hybrid Photovoltaic-diesel Energy System Optimization (Case Study of Electric Power Supply for Buildings under the Weather Conditions of Montenegro) (2014).

DOI: 10.4028/www.scientific.net/amm.627.357

Google Scholar

[7] Murgul, V. Solar energy systems in the reconstruction of heritage historical buildings of the northern towns (for example Sain-Petersburg) (2014) Journal of Applied Engineering Science, Vol. 12, No. 2, pp.121-128.

DOI: 10.5937/jaes12-6136

Google Scholar

[8] Gorshkov, A. S., Derunov, D. V. Zavgorodnij, V. V. Tekhnologiya i organizatsiya stroitelstva zdaniya s nulevym potrebleniyem energii [Technology and organization of the building with zero energy consumption] (2013).

Google Scholar

[9] Gorshkov, A. S., Nemova, D. V., Vatin, N. I. Formula energoeffektivnosti [The energy saving formula] (2013) Construction of Unique Buildings and Structures, 7 (12), pp.49-63. (rus).

Google Scholar

[10] Tseytin, D. N., Nemova, D. V., Kurasova, E. V. Avtonomnaya energoustanovka s kompleksnym energoeffektivnym elektroobespecheniyem [Autonomous power installation with complex power effective electroproviding] (2013).

Google Scholar

[11] Zubkova, M. Yu., Maslikov, V.I., Molodtsov, D.V., Chusov, A.N. Experimental research of hydrogenous fuel production from biogas for usage in fuel cells of autonomous power supply systems (2014) Advanced Materials Research, 941-944, pp.2107-2111.

DOI: 10.4028/www.scientific.net/amr.941-944.2107

Google Scholar

[12] Korniyenko, S.V. Raschetno-eksperimentalnyy kontrol energosberezheniya zdaniy [Settlement and experimental control of energy saving for buildings] (2013) Magazine of Civil Engineering, 8 (43), pp.24-30. (rus).

DOI: 10.5862/mce.43.4

Google Scholar

[13] Samarin, O.D., Tishchenkova, I.I. Issledovaniye reguliruyemykh parametrov v avtomatizirovannykh klimaticheskikh sistemakh v tselyakh energosberezheniya [Research of adjustable parameters in the automated climatic systems at the aim of energy saving] (2013).

DOI: 10.5862/mce.37.2

Google Scholar

[14] Petrichenko, M.R., Petrochenko, M.V., Yavtushenko, Ye.B. Gidravlicheski optimalnaya ventiliruyemaya shchel [A hydraulically optimum ventilated gap] (2013) Magazine of Civil Engineering, 2 (37), pp.35-40. (rus).

DOI: 10.5862/mce.37.5

Google Scholar

[15] Nemova, D.V. Sistemy ventilyatsii v zhilykh zdaniyakh kak sredstvo povysheniya energoeffektivnosti [Ventilation systems in residential buildings as means of increase of power efficiency] (2012).

Google Scholar

[16] Korniyenko, S. V. Opyt proyektirovaniya i stroitelstva energoeffektivnykh zdaniy v g. Volgograde [Experience of design and construction of energy effective buildings in Volgograd] (2013).

Google Scholar

[17] Bolotin, S.A., Gurinov, A.I., Dadar, A.H., Oolakay, Z.H. Otsenka energoeffektivnosti arkhitekturno-stroitelnykh resheniy nachalnogo etapa proyektirovaniya v programme Revit Architecture [An energy efficiency evaluation of architectural and construction solutions of an initial design stage in Autodesk REVIT Architecture] (2013).

DOI: 10.5862/mce.43.9

Google Scholar

[18] Korniyenko, S. V. Uchet formy pri otsenke teplozashchity obolochki zdaniya [The accounting of the form at the assessment of the thermal performance of the envelopes] (2013) Construction of Unique Buildings and Structures, 5 (10), pp.20-27. (rus).

Google Scholar

[19] Gosteev, Yu.A., Obuhovskiy, A.D., Salenko, S.D. Vliyaniye formy na aerodinamicheskiye kharakteristiki balochnykh mostov [Influence of the shape on aerodynamic characteristics of girder bridges] (2014).

DOI: 10.5862/mce.49.7

Google Scholar

[20] Vetrogenerator EuroWind 500 [Wind turbine EuroWind 500]. Available at: http: /wind. ae. net. ua/index. php/main/index/0/285 (accessed October 11, 2014). (rus).

Google Scholar

[21] Vatin, N., Isaev, S., Guvernyik, S., Gagarin, V., Basok, B., Zhukova, Yu. Architectural building aerodynamics of tall structures with the bleeding effect and wind energy selection (2014).

DOI: 10.7250/iscconstrs.2014.32

Google Scholar

[22] Rakova, X.M. Wind Power Market Development Initiative (2014) Applied Mechanics and Materials, 617, pp.307-312.

DOI: 10.4028/www.scientific.net/amm.617.307

Google Scholar

[23] Petrochenko, M., Yavtushenko, E. Diffused Structure of Drained and Back-Ventilated Rainscreen Claddings (2014) Advanced Materials Research, 945-949, pp.1015-1022.

DOI: 10.4028/www.scientific.net/amr.945-949.1015

Google Scholar

[24] Vatin, N., Petrichenko M., Nemova, D. Hydraulic methods for calculation of system of rear ventilated facades (2014) Applied Mechanics and Materials, 633-634, pp.1007-1012.

DOI: 10.4028/www.scientific.net/amm.633-634.1007

Google Scholar

[25] Meleshko, V.A., Khertek, U. Kh., Rogovoy, Yu.A. Opredelenie aerodinamicheskih parametrov navesa vokzala Olimpiyskiy park". Fizicheskiy i chislennyiy eksperimentyi [Determination of aerodynamic parameters of "Olympic Park, railway station canopy. Physical and numerical experiments] (2013).

DOI: 10.5862/mce.44.1

Google Scholar

[26] Guzeyev, A.S., Korotkin, A.I., Lebedev, A.O., Rogovoy, Yu.A. Analiz nekotorykh rezultatov po opredeleniyu aerodinamicheskikh kharakteristik vysotnykh zdaniy [Analysis of some results of determining aerodynamic qualities of high-rise buildings] (2009).

Google Scholar

[27] Sotnikov, A.G. Analiticheskaya metodika opredeleniya naruzhnykh raschetnykh parametrov v sistemakh mikroklimata zdaniy [Analytic method of determination of the external design parameters in the microclimate systems of buildings] (2013).

Google Scholar

[28] Isaev, S.A., Vatin, N.I., Lebiga, V.A., Zinoviev, V.N., Keh-Chin Chang, Jiun-Jih Miau. Problems and methods of numerical and experimental investigation of high rise constructions' aerodynamics in the coastal region sea-land, (2013).

DOI: 10.5862/mce.37.8

Google Scholar

[29] Semenov, A.A., Porivaev, I.A., Safiullin, M.N. Issledovaniya vetrovoy i snegovoy nagruzok na pokrytiya vertikalnykh tsilindricheskikh rezervuarov [Research of wind and snow cover loads on the roofs of the vertical cylindrical tanks] (2012).

DOI: 10.5862/mce.31.2

Google Scholar

[30] Isaev, S.A., Vatin, N.I., Baranov, P.A., Sudakov, A.G., Usachov, A. Ye., Yegorov, V.V. Razrabotka i verifikatsiya mnogoblochnykh vychislitelnykh tekhnologiy dlya resheniya nestatsionarnykh zadach stroitelnoy aerodinamiki vysotnykh zdaniy v ramkakh podkhoda URANS [Development and verification of multiblock computational technologies for solution of unsteady problems of high building aerodynamics in the framework of URANS approach] (2013).

DOI: 10.5862/mce.36.13

Google Scholar

[31] Girgidov, A.D. Tehnicheskaya mehanika zhidkosti i gaza [Technical fluid mechanics] (1999) Saint-Petersburg: Izd-vo SPbGPU, p.291.

Google Scholar

[32] Gorshkov, A.S., Rymkevich, P.P., Nemova, D.V., Vatin, N.I. Metodika rascheta okupayemosti investitsiy po renovatsii fasadov sushchestvuyushchikh zdaniy [Method of calculating the payback period of investment for renovation of building facades] (2014).

Google Scholar

[33] Gorshkov, A.S., Rymkevich, P.P., Pestryakov, I.I., Knatko, M.V. Prognozirovaniye ekspluatatsionnogo sroka sluzhby stenovoy konstruktsii iz gazobetona s oblitsovochnym sloyem iz silikatnogo kirpicha [Prediction of the operational lifetime of the aerated concrete wall structure with a facing layer of silica brick] (2010).

Google Scholar