[1]
European Parliament and of the Council: Directive 2010/31/EU (2010) Official Journal of the European Union, 153 p.
Google Scholar
[2]
EN ISO 13790: 2008. Energy performance of buildings - Calculation of energy use for space heating and cooling.
Google Scholar
[3]
Gasparella, A., Pernigotto, G. Comparison of quasi-steady state and dynamic simulation approaches for the calculation of building energy needs: thermal losses (2012).
Google Scholar
[4]
Panek, A., Rucińska, J., Mijakowski, M. Adjustment of parameters used for calculation method applied in certification process in Poland (2013) CESB10, pp.768-775.
Google Scholar
[5]
Methodology for calculating the energy performance of buildings, http: /www. energy-community. org/pls/portal/docs/1362181. PDF.
Google Scholar
[6]
CENSE: List of CEN standards to support the EPBD, http: /www. iee-cense. eu.
Google Scholar
[7]
EN 15265: Thermal performance of buildings – Calculation of energy use for space heating and cooling – General criteria and validation procedures.
DOI: 10.3403/30136887u
Google Scholar
[8]
Hens, H. Applied Building Physics, Ernst&Sohn (2011) 308 p.
Google Scholar
[9]
Alihodzic, R., Murgul, V., Vatin, N., Aronova, E., Nikolić, V., Tanić, M., Stanković, D. Renewable Energy Sources used to Supply Pre-school Facilities with Energy in Different Weather Conditions (2014).
DOI: 10.4028/www.scientific.net/amm.624.604
Google Scholar
[10]
Dudkiewicz, E., Fidorów, N., Jeżowiecki, J. Analiza zużycia energii dla grzewczych systemów promieniujących (2013) Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 15, p.2293–2308.
Google Scholar
[11]
Murgul, V., Vatin, N., Aronova, E. Autonomous systems of solar energy supply under the weather conditions of Montenegro (2014) Applied Mechanics and Materials, Vol. 680, pp.486-493.
DOI: 10.4028/www.scientific.net/amm.680.486
Google Scholar
[12]
Žegarac Leskovar, V., Premrov, M., Vidovič, K. Architectural geometry of timber-glass buildings and its impact on energy flows through building skin (2013).
DOI: 10.1201/b14563-20
Google Scholar
[13]
Leskovar, V.Ž., Premrov, M. An approach in architectural design of energy-efficient timber buildings with a focus on the optimal glazing size in the south-oriented façade (2011) Energy and Buildings, 43 (12), pp.3410-3418.
DOI: 10.1016/j.enbuild.2011.09.003
Google Scholar
[14]
Žegarac Leskovar, V., Premrov, M. Design approach for the optimal model of an energy-efficient timber building with various glazing types and surfaces on the south façade (2011) WIT Transactions on the Built Environment, 118, pp.541-552.
DOI: 10.2495/str110451
Google Scholar
[15]
Ostrowska, A., Sobczyk, W. Małgorzata Pawul Ocena efektów ekonomicznych i ekologicznych wykorzystania energii słonecznej na przykładzie domu jednorodzinnego (2013).
Google Scholar
[16]
Žegarac Leskovar, V., Premrov, M. Influence of glazing size on energy efficiency of timber-frame buildings (2012) Construction & building materials, vol. 30, pp.92-99.
DOI: 10.1016/j.conbuildmat.2011.11.020
Google Scholar
[17]
Zadvinskaya T.O., Gorshkov A.S. Comprehensive method of energy efficiency of residential house (2014) Advanced Materials Research. Vol. 953-954. pp.1570-1577.
DOI: 10.4028/www.scientific.net/amr.953-954.1570
Google Scholar
[18]
Žegarac Leskovar, V., Premrov, M. Design approach for the optimal model of an energy-efficient timber building with enlarged glazing surface on the south façade (2012).
DOI: 10.3130/jaabe.11.71
Google Scholar
[19]
Database of climatic data, Energy Community, http: /www. energy-community. org.
Google Scholar
[20]
Beccali, M., Bertini, I., Ciulla, G., Di Pietra, B., Lo Brano, V. Software for weather databases management and costruction of reference years (2011) Proceedings of Building Simulation 12th Conference, Sydney, pp.886-894.
Google Scholar