[1]
Dedkov, V.I., Mikhal'chuk, P.А. Osobennosti vzaimodejstviya betona svaj posle zabivki s agressivnoj sredoj [Features of the interaction of concrete pile after pile with aggressive environment] (1989).
Google Scholar
[2]
Nozhnov, А.P., Bulatov, G. YA. CHislennoe modelirovanie vliyaniya gruntovogo yadra na nesushhuyu sposobnost' trubosvai [Numerical simulation of the soil core to the carrier ability trubosvai] (2010).
Google Scholar
[3]
Dalmatova, B. I. Proektirovanie fundamentov zdanij i podzemnykh sooruzhenij [Design of building foundations and underground structures] (2006) Uchebnoe posobie, Pod red. S-Pb., Izd-vo АSV, p.428. (rus).
Google Scholar
[4]
Philipponnat. G., Hubert. B. Fondation et ouvrages en terre (2008) Eyrolles, p.548.
Google Scholar
[5]
Schaffner, A.I. Ein rheologisches Modell zur Auswendung von Pfahprobelastungen (1996) Bauthenik, 4, p.97.
Google Scholar
[6]
Van Impe, W.F. Deformations of deep foundation (1991) General Report X. ECSMFE, pp.2638-2640.
Google Scholar
[7]
Van Impe, W.F. Developments in pile design (1991) DFI, Conference, Stressa, pp.2217-2234.
Google Scholar
[8]
Rajapakse, R. Pile Design: Special Situations (2008) Pile Design and Construction Rules of Thumb, 6, p.99–139.
DOI: 10.1016/b978-0-7506-8763-8.00006-4
Google Scholar
[9]
Rajapakse, R. Pile Design in Clay Soils (2008) Pile Design and Construction Rules of Thumb, 5, p.75–98.
DOI: 10.1016/b978-0-7506-8763-8.00005-2
Google Scholar
[10]
Rajapakse, R. Pile Design in Sandy Soils (2008) Pile Design and Construction Rules of Thumb, 4, p.41, 43–73.
DOI: 10.1016/b978-0-7506-8763-8.00004-0
Google Scholar
[11]
Rajapakse, R. Pile Load Tests (2008) Pile Design and Construction Rules of Thumb, 26, p.389–393.
DOI: 10.1016/b978-0-7506-8763-8.00026-x
Google Scholar
[12]
Rajapakse, R. Pile Design Software (2008) Pile Design and Construction Rules of Thumb, 20, p.337–342.
DOI: 10.1016/b978-0-7506-8763-8.00020-9
Google Scholar
[13]
Rajapakse, R. Types of Pile (2008) Pile Design and Construction Rules of Thumb, 2, p.15–35.
DOI: 10.1016/b978-0-7506-8763-8.00002-7
Google Scholar
[14]
Bakholdin, B. V., Igon'kin, N. T. K voprosu o soprotivlenii grunta po bokovoj poverkhnosti svai [On the resistance of the soil on the lateral surface of the pile] (1968).
Google Scholar
[15]
Bulatov, G. YA., Kolosova, N.B. Kriterii vybora vibropogruzhatelya [Criteria for selection of the vibrator] (2011) Magazine of Civil Engineering, 1, p.32–39. (rus).
Google Scholar
[16]
Gutkin, YU.M. Opredelenie koehffitsienta posteli svajnogo osnovaniya podkranovykh balok [Determination of the coefficient of bed pile foundation crane girders] (1981) Transportnoe stroitel'stvo, 2, p.49. (rus).
Google Scholar
[17]
Znamenskij, V.V. Inzhenernyj metod raschyota nesushhej sposobnosti gorizontal'no nagruzhennykh grupp svaj [Engineering method for calculating the bearing capacity of horizontally loaded piles groups] (2000).
Google Scholar
[18]
Znamenskij, V.V., Ukhov, S.B., Semenov, V.V. Prichiny vozniknoveniya i prognoz razvitiya neravnomernykh osadok osnovaniya Gosudarstvennogo Istoricheskogo muzeya [Causes and prognosis of non-uniform sediment foundation of the State Historical Museum ] (2001).
Google Scholar
[19]
Safonov, А.P. Nesushhaya sposobnost' svaj v glinistykh gruntakh pri dejstvii gorizontal'noj nagruzki [The bearing capacity of piles in clay soils under the action of horizontal load] (1984) Diss. na soisk. uch. step. k. t. n., p.167. (rus).
Google Scholar
[20]
Badanin, А.N., Kolosov, E.S. Opredelenie nesushhej sposobnosti armirovannogo georeshetkoj gruntovogo osnovaniya [Determination of bearing capacity of geogrid reinforced soil foundation ] (2012) Magazine of Civil Engineering, 4, pp.25-32. (rus).
DOI: 10.5862/mce.30.4
Google Scholar
[21]
Kalachuk, T.G. Modul'nye svai tavrovogo secheniya i sostavnye na ikh osnove v glinistykh gruntakh [Modular T-section piles and composite based on them in clay soils] (2004) Diss. na soisk. uchen. step. k. t. n., p.136. (rus).
Google Scholar
[22]
Gotman, N.Z., Makarjew, M.I. Consideration of riot and soil interaction in piled-raft design (2004) Case Histories in Geotechnical Engineering material of 4th International Conference, 1, p.61.
Google Scholar
[23]
Randolph, M.F. Design methods for pile groups and piled rafts (1994) 13th Intermational Conference for Soil Mechanics and Foundation Engineering, 5, pp.61-82.
Google Scholar
[24]
Mangushev, R.А., Ershov, А.V., Osokin, А.I. Sovremennye svajnye tekhnologii [Modern technology pile] (2007) Izdatel'stvo ACB, SPbGАSU, p.160. (rus).
Google Scholar
[25]
SNiP 2. 02. 03–85 «Svajnye fundamenty» [Pile Foundations] Utverzhden Prikazom Minregiona RF № 786 ot 20. 05. 11 g. (rus).
Google Scholar
[26]
GOST 5686-94 «Grunty. Metody polevykh ispytanij svayami» [Soils. Field test methods piles] Vveden v dejstvie Postanovleniem Minstroya RF № 18-20 ot 23. 02. 95 g. (rus).
Google Scholar
[27]
Vatin, N.I. Ustrojstvo svajnykh fundamentov [The Apparatus of Pile Foundations] (2012) Uchebnoe posobie, Izd-vo Politekhn. un-ta, p.221. (rus).
Google Scholar
[28]
Bulatov, G. YA., Kolosova, N.B., Teplov, А.B. Nesushhaya sposobnost' zabivnoj svai razlichnykh form poperechnogo secheniya [The bearing capacity of driven piles of various cross-sectional shapes ] (2013).
Google Scholar
[29]
Bulatov, G. YA., Nozhnov, А.P. CHislennoe modelirovanie vliyanie gruntovogo yadra na nesushhuyu sposobnost' trubosvaj [Numerical simulation of the effect of the nucleus on the soil bearing capacity pipepile] (2010).
Google Scholar
[30]
Bulatov, G. YA., SHilkin, F.S. Vybor i raschety proizvoditel'nosti svaebojnogo oborudovaniya [Selection and calculation performance piling equipment ] (2013) Journal Construction of Unique Buildings and Structures, 3, p.46 – 59. (rus).
Google Scholar
[31]
Grekhov, I.V., Gol'denberg, I.N. Konstruktsii opor vremennykh zheleznodorozhnykh mostov [Temporary support structure of railway bridges ] (2000) Uchebnoe posobie, Izd-vo «Evroservis-OOO», p.144. (rus).
Google Scholar
[32]
Аlekseev, S.I. Osnovaniya i fundamenty [Substructures and Foundations] (2007) Uchebnoe posobie, Izd-vo PGUPS, p.111. (rus).
Google Scholar