The Comparison of Pile Load Capacity Based on the Results of Analytical Calculations and Static Tests

Article Preview

Abstract:

The article discusses the causes of discrepancies in the values of the pile load capacity based on the results of calculations made on the basis of existing regulations and the pile load capacity after static load test on the construction site. A brief overview of the causes of discrepancies in analytical and practical values ​​of pile load capacity is provided in the article. The possible ways to solve this problem are suggested, namely, the development of the methods of analytical calculations of pile load capacity and the improvement of embedding technical processes. There is an example of such a discrepancy in the construction of a residential complex in Saint-Petersburg presented in the article. It was found that the variation in the results is not caused by the imperfections in the method of calculations, but by the infringements of construction technology. The article provides recommendations to minimize the discrepancies between the calculated and actual values of pile load capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-194

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dedkov, V.I., Mikhal'chuk, P.А. Osobennosti vzaimodejstviya betona svaj posle zabivki s agressivnoj sredoj [Features of the interaction of concrete pile after pile with aggressive environment] (1989).

Google Scholar

[2] Nozhnov, А.P., Bulatov, G. YA. CHislennoe modelirovanie vliyaniya gruntovogo yadra na nesushhuyu sposobnost' trubosvai [Numerical simulation of the soil core to the carrier ability trubosvai] (2010).

Google Scholar

[3] Dalmatova, B. I. Proektirovanie fundamentov zdanij i podzemnykh sooruzhenij [Design of building foundations and underground structures] (2006) Uchebnoe posobie, Pod red. S-Pb., Izd-vo АSV, p.428. (rus).

Google Scholar

[4] Philipponnat. G., Hubert. B. Fondation et ouvrages en terre (2008) Eyrolles, p.548.

Google Scholar

[5] Schaffner, A.I. Ein rheologisches Modell zur Auswendung von Pfahprobelastungen (1996) Bauthenik, 4, p.97.

Google Scholar

[6] Van Impe, W.F. Deformations of deep foundation (1991) General Report X. ECSMFE, pp.2638-2640.

Google Scholar

[7] Van Impe, W.F. Developments in pile design (1991) DFI, Conference, Stressa, pp.2217-2234.

Google Scholar

[8] Rajapakse, R. Pile Design: Special Situations (2008) Pile Design and Construction Rules of Thumb, 6, p.99–139.

DOI: 10.1016/b978-0-7506-8763-8.00006-4

Google Scholar

[9] Rajapakse, R. Pile Design in Clay Soils (2008) Pile Design and Construction Rules of Thumb, 5, p.75–98.

DOI: 10.1016/b978-0-7506-8763-8.00005-2

Google Scholar

[10] Rajapakse, R. Pile Design in Sandy Soils (2008) Pile Design and Construction Rules of Thumb, 4, p.41, 43–73.

DOI: 10.1016/b978-0-7506-8763-8.00004-0

Google Scholar

[11] Rajapakse, R. Pile Load Tests (2008) Pile Design and Construction Rules of Thumb, 26, p.389–393.

DOI: 10.1016/b978-0-7506-8763-8.00026-x

Google Scholar

[12] Rajapakse, R. Pile Design Software (2008) Pile Design and Construction Rules of Thumb, 20, p.337–342.

DOI: 10.1016/b978-0-7506-8763-8.00020-9

Google Scholar

[13] Rajapakse, R. Types of Pile (2008) Pile Design and Construction Rules of Thumb, 2, p.15–35.

DOI: 10.1016/b978-0-7506-8763-8.00002-7

Google Scholar

[14] Bakholdin, B. V., Igon'kin, N. T. K voprosu o soprotivlenii grunta po bokovoj poverkhnosti svai [On the resistance of the soil on the lateral surface of the pile] (1968).

Google Scholar

[15] Bulatov, G. YA., Kolosova, N.B. Kriterii vybora vibropogruzhatelya [Criteria for selection of the vibrator] (2011) Magazine of Civil Engineering, 1, p.32–39. (rus).

Google Scholar

[16] Gutkin, YU.M. Opredelenie koehffitsienta posteli svajnogo osnovaniya podkranovykh balok [Determination of the coefficient of bed pile foundation crane girders] (1981) Transportnoe stroitel'stvo, 2, p.49. (rus).

Google Scholar

[17] Znamenskij, V.V. Inzhenernyj metod raschyota nesushhej sposobnosti gorizontal'no nagruzhennykh grupp svaj [Engineering method for calculating the bearing capacity of horizontally loaded piles groups] (2000).

Google Scholar

[18] Znamenskij, V.V., Ukhov, S.B., Semenov, V.V. Prichiny vozniknoveniya i prognoz razvitiya neravnomernykh osadok osnovaniya Gosudarstvennogo Istoricheskogo muzeya [Causes and prognosis of non-uniform sediment foundation of the State Historical Museum ] (2001).

Google Scholar

[19] Safonov, А.P. Nesushhaya sposobnost' svaj v glinistykh gruntakh pri dejstvii gorizontal'noj nagruzki [The bearing capacity of piles in clay soils under the action of horizontal load] (1984) Diss. na soisk. uch. step. k. t. n., p.167. (rus).

Google Scholar

[20] Badanin, А.N., Kolosov, E.S. Opredelenie nesushhej sposobnosti armirovannogo georeshetkoj gruntovogo osnovaniya [Determination of bearing capacity of geogrid reinforced soil foundation ] (2012) Magazine of Civil Engineering, 4, pp.25-32. (rus).

DOI: 10.5862/mce.30.4

Google Scholar

[21] Kalachuk, T.G. Modul'nye svai tavrovogo secheniya i sostavnye na ikh osnove v glinistykh gruntakh [Modular T-section piles and composite based on them in clay soils] (2004) Diss. na soisk. uchen. step. k. t. n., p.136. (rus).

Google Scholar

[22] Gotman, N.Z., Makarjew, M.I. Consideration of riot and soil interaction in piled-raft design (2004) Case Histories in Geotechnical Engineering material of 4th International Conference, 1, p.61.

Google Scholar

[23] Randolph, M.F. Design methods for pile groups and piled rafts (1994) 13th Intermational Conference for Soil Mechanics and Foundation Engineering, 5, pp.61-82.

Google Scholar

[24] Mangushev, R.А., Ershov, А.V., Osokin, А.I. Sovremennye svajnye tekhnologii [Modern technology pile] (2007) Izdatel'stvo ACB, SPbGАSU, p.160. (rus).

Google Scholar

[25] SNiP 2. 02. 03–85 «Svajnye fundamenty» [Pile Foundations] Utverzhden Prikazom Minregiona RF № 786 ot 20. 05. 11 g. (rus).

Google Scholar

[26] GOST 5686-94 «Grunty. Metody polevykh ispytanij svayami» [Soils. Field test methods piles] Vveden v dejstvie Postanovleniem Minstroya RF № 18-20 ot 23. 02. 95 g. (rus).

Google Scholar

[27] Vatin, N.I. Ustrojstvo svajnykh fundamentov [The Apparatus of Pile Foundations] (2012) Uchebnoe posobie, Izd-vo Politekhn. un-ta, p.221. (rus).

Google Scholar

[28] Bulatov, G. YA., Kolosova, N.B., Teplov, А.B. Nesushhaya sposobnost' zabivnoj svai razlichnykh form poperechnogo secheniya [The bearing capacity of driven piles of various cross-sectional shapes ] (2013).

Google Scholar

[29] Bulatov, G. YA., Nozhnov, А.P. CHislennoe modelirovanie vliyanie gruntovogo yadra na nesushhuyu sposobnost' trubosvaj [Numerical simulation of the effect of the nucleus on the soil bearing capacity pipepile] (2010).

Google Scholar

[30] Bulatov, G. YA., SHilkin, F.S. Vybor i raschety proizvoditel'nosti svaebojnogo oborudovaniya [Selection and calculation performance piling equipment ] (2013) Journal Construction of Unique Buildings and Structures, 3, p.46 – 59. (rus).

Google Scholar

[31] Grekhov, I.V., Gol'denberg, I.N. Konstruktsii opor vremennykh zheleznodorozhnykh mostov [Temporary support structure of railway bridges ] (2000) Uchebnoe posobie, Izd-vo «Evroservis-OOO», p.144. (rus).

Google Scholar

[32] Аlekseev, S.I. Osnovaniya i fundamenty [Substructures and Foundations] (2007) Uchebnoe posobie, Izd-vo PGUPS, p.111. (rus).

Google Scholar