[1]
Institut OAO PI Lenproyektstalkonstruktsiya Stalnyye konstruktsii pokrytiy proizvodstvennykh zdaniy iz zamknutykh gnutosvarnykh profiley pryamougolnogo secheniya proletom 18, 24 i 30 m s uklonom 10% [Steel designs of roofing systems of production buildings from the rectangular section profiles with 18, 24 and 30 m spans and 10% slope] (1999).
Google Scholar
[2]
Gavrilin, B.A. Proyektirovaniye stalnoy stropilnoy fermy : metodicheskiye ukazaniya k kursovomu proyektu [Design of a steel rafter farm: methodical instructions to an academic year project] (1991).
Google Scholar
[3]
Yuryev, A.G., Logachev, K.I., Klyuyev, S.V. Optimalnoye proyektirovaniye fermy pri silovykh i temperaturnykh vozdeystviyakh s uchetom bezopasnoy ustoychivosti [Optimum truss design under power and temperature influences taking safe stability into account] (2007).
Google Scholar
[4]
Petrov, K.V., Zolotareva, Ye.A., Volodin, V.V., Vatin, N.I., Zhmarin, Ye.N. Rekonstruktsiya krysh Sankt – Peterburga na osnove legkikh stalnykh tonkostennykh konstruktsiy i antiobledenitelnoy sistemy [Reconstruction of Saint – Petersburg roofs on the basis of light steel thin-walled structures and anti-freezing system] (2010).
Google Scholar
[5]
Vatin, N.I., Sinelnikov, A.S. Bolsheproletnyye nadzemnyye peshekhodnyye perekhody iz legkogo kholodnognutogo stalnogo profilya [Wide-span elevated crosswalks from an light steel thin-walled structures] (2012).
Google Scholar
[6]
Alekseytsev, A.V. Evolyutsionnaya optimizatsiya stalnykh ferm s uchetom uzlovykh soyedineniy sterzhney [Evolutionary optimization of steel trusses based nodal connections rods] (2013) Magazine of Civil Engineering, 5, pp.28-37.
DOI: 10.5862/mce.40.3
Google Scholar
[7]
Lalin, V.V., Rybakov, V.А., Sergey, А. The finite elements for design of frame of thin-walled Beams (2014) Applied Mechanics and Materials, 578-579, pp.858-863.
DOI: 10.4028/www.scientific.net/amm.578-579.858
Google Scholar
[8]
Vatin N. I, Sinelnikov, A. S. Strength and durability of thin-walled cross-sections (2013) Design, fabrication and economy of metal structures, pp.165-170.
DOI: 10.1007/978-3-642-36691-8_25
Google Scholar
[9]
Vatin N. I, Sinelnikov, A. S., Garifullin, М., Trubina, D. Simulation of cold-formed steel beams in global and distortional buckling (2014) Applied Mechanics and Materials, 633-634, pp.1037-1041.
DOI: 10.4028/www.scientific.net/amm.633-634.1037
Google Scholar
[10]
Daniunas, A., Kvedaras, A. K., Sapalas, A., Sauciuvėnas G. Design basis of Lithuanian steel and aluminium structure codes and their relations to Eurocode (2006) Journal of Constructional Steel Research, 62, p.1250–1256.
DOI: 10.1016/j.jcsr.2006.04.018
Google Scholar
[11]
Chan, S.L. Non-linear behave ior and design of steel structures (2001) Journal of Constructional Steel Research, 57, p.1217–1231.
DOI: 10.1016/s0143-974x(01)00050-5
Google Scholar
[12]
Tenga, J.G., Yub, T, Fernandoc D. Strengthening of steel structures with fiber-reinforced polymer composites (2012) Journal of Constructional Steel Research, 78, p.131–143.
DOI: 10.1016/j.jcsr.2012.06.011
Google Scholar
[13]
Hea, Y., Zhoua, X., Zhanga, X. Finite element analysis of the elastic static properties and stability of pretensioned cylindrical reticulated mega-structures (2012) Thin-Walled Structures, 60, p.1–11.
DOI: 10.1016/j.tws.2012.06.017
Google Scholar
[14]
Bickford, J.H. An introduction to the design and behavior of bolted joints: Third Edition (2007) CRC Press: Third Edition, 78 p.
Google Scholar
[15]
Kociecki, M, Adeli, H. Two-phase genetic algorithm for size optimization of free-form steel space - frame roof structures (2013) Journal of Constructional Steel Research, 90, pp.283-296.
DOI: 10.1016/j.jcsr.2013.07.027
Google Scholar
[16]
Buhl, Th., Jensen, F.V., Pellegrino, S. Shape optimization of cover plates for retractable roof structures (2004) Computers and Structures, 82, pp.1227-1236.
DOI: 10.1016/j.compstruc.2004.02.021
Google Scholar
[17]
Beskorovainaia, O.N., Bychkov, D.S. The quickly erected buildings in modern construction (2014) Advanced Materials Research, 941-944, pp.868-872.
DOI: 10.4028/www.scientific.net/amr.941-944.868
Google Scholar
[18]
Rybakov, V., Panteleev, A., Sharbabchev, G., Epshtein, E. Snow-retaining system as a temporary decision for providing of the suitable temperature and humidity level of pitched roofs (2014) Applied Mechanics and Materials, 584-586, pp.1876-1880.
DOI: 10.4028/www.scientific.net/amm.584-586.1876
Google Scholar
[19]
Karpilovskiy, V.S., Kriksunov, E.Z., Malyarenko, A.A. SCAD Office. Formirovaniye secheniy i raschet ikh geometricheskikh kharakteristik [SCAD Office. Sections formation and calculation of their geometrical characteristics], [electronic document] (2011).
Google Scholar
[20]
Karpilovskiy, V.S., Kriksunov, E.Z., Malyarenko, A.A. SCAD Office. Vychislitelnyy kompleks SCAD [SCAD Office. SCAD calculation system], [electronic document] (2011) Izdatelstvo SKAD SOFT, 656 p.
DOI: 10.34031/2071-7318-2021-6-1-29-37
Google Scholar
[21]
Vatin, N., Havula, J., Martikainen, L., Sinelnikov, A., Orlova, А., Salamakhin, S. Thin-walled cross-sections and their joints: tests and FEM-modelling (2014) Advanced Materials Research, 945-949, pp.1211-1215.
DOI: 10.4028/www.scientific.net/amr.945-949.1211
Google Scholar
[22]
Kompleks programm SCAD office - instrumentariy inzhenera-proyektirovshchika [Complex of the SCAD Office programs - tools of the design engineer] (2007) Promyshlennoye i grazhdanskoye stroitelstvo (PGS), 3, 56 p.
Google Scholar
[23]
Kompleks programm SCAD Office - instrumentariy inzhenera - proyektirovshchika [Complex of the SCAD Office programs - tools of the design engineer] (2007) Promyshlennoye i grazhdanskoye stroitelstvo (PGS), 4, 60 p.
Google Scholar
[24]
Shubber, Z. The development of the typical roof structure project based on trusses made of roll-welded rhs pipes: Bachelor's Thesis; Saimaa University of Applied Sciences, Lappeenranta Technology, Civil and Construction Engineering (2013).
DOI: 10.4028/www.scientific.net/amm.725-726.774
Google Scholar