Modeling Nonlinear Deformation and Destruction Masonry under Biaxial Stresses Part 2 - Strength Criteria and Numerical Experiment

Article Preview

Abstract:

Masonry is a complex multicomponent composite consisting of dissimilar materials (brick / stone and mortar). Masonry deformation process under loading depends on the mechanical characteristics of the basic composite materials, as well as of the parameters of the elements defining binding between brick and mortar being the interface elements. Traditional methods of masonry modeling are based on the use of generalized ("effective") mechanical properties of the composite as a continuant homogeneous continuant medium. This paper presents an overview and analysis of continuant masonry models adequately reflecting the process of elastic, and in some cases elastic-plastic masonry deformation within the composition of stone structural elements. The paper provides analysis of the experimental research results of masonry behaviour in a biaxial stress state at primary stresses of opposite signs; identifies masonry destruction mechanisms complying with the conditions of stress state. The work demonstrates the key role played by interface elements in the formation of masonry destruction processes. Based on destruction mechanisms deduced from experiments, there was developed a discrete model of masonry. A system of masonry strength criteria was proposed corresponding to the biaxial stress state conditions at primary stresses of opposite signs. For purposes of studying the elastic-plastic deformation and destruction of masonry, there was developed a technology of numerical experiment performance using calculation technologies with a stepwise tracking of stress-and-strain state, at step-by-step loading. The scope of this paper includes verification of modeling method and technology of numerical experiment at various parameters of interface elements defining binding between bricks and mortar

You might also be interested in these eBooks

Info:

Periodical:

Pages:

808-819

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Burago, N.G. Modelirovanie razrusheniia uprugoplasticheskikh tel. [Modelling of elastoplastic bodies destruction] (2008) Vychislitelnaia mekhanika sploshnykh sred, Vol 1, No 4, p.5–20. (rus).

Google Scholar

[2] Romalis, N.B., Tamuzh, V.P. Razrushenie strukturno neodnorodnykh tel. [Destruction of structurally inhomogeneous bodies] (1989) Zinatne, 224 p. (rus).

Google Scholar

[3] Vildeman, V.E., Sokolkin, Iu.V., Tashkinov, A.A. Mekhanika neuprugogo deformirovaniia i razrusheniia kompozitcionnykh materialov. Pod red. Iu.V. Sokolkina. [Mechanics of inelastic deformation and destruction composite materials] (1997).

Google Scholar

[4] Iliushin, A.A. Ob odnoi teorii dlitelnoi prochnosti. [About one theory of long-term strength] (1967) Inzhenernyi zhurnal mekhaniki tverdogo tela, 3, p.21–35. (rus).

Google Scholar

[5] Iliushin, A.A. Mekhanika sploshnoi sredy [Mechanics of Continua] (1978) Izdatelstvovo Moskovskogo universiteta, 287 p. (rus).

Google Scholar

[6] Fridman, Ya.B. Mekhanicheskiye svoystva metallov. Ch. 1. Deformatsiya i razrusheniye [Mechanical properties of metals. Part. 1. Deformation and destruction] (1974) Mashinostroyeniye, 472 p. (rus).

Google Scholar

[7] Balandin, P.P. K voprosu o gipotezakh prochnosti [On the strength hypotheses] (1937) Vestnik inzhenerov i tekhnikov, 1, p.12–36. (rus).

Google Scholar

[8] Geniyev, G.A., Kisyuk, V.N., Tyupin, G.A. Teoriya plastichnosti betona i zhelezobetona [Plasticity theory concrete and reinforced concrete] (1974) Stroyizdat, 316 p. (rus).

Google Scholar

[9] Zaytsev, Yu.V. Modelirovaniye deformatsiy i prochnosti betona metodami mekhaniki razrusheniya [Modeling deformation and strength of concrete by destruction mechanics methods] (1982) Stroyizdat, 196 p. (rus).

Google Scholar

[10] Karpenko, N.I. Metodika konechnykh prirashcheniy dlya rascheta deformatsiy zhelezobetonnykh elementov pri znakoperemennoy nagruzke. Obshchiye modeli mekhaniki zhelezobetona [Incremental method methodology for calculating the mean value deformation of reinforced concrete elements with variable sign load. General models of reinforced concrete] (1996).

Google Scholar

[11] Yashin, A.V. Vliyaniye neodnoosnykh (slozhnykh) napryazhennykh sostoyaniy na prochnost i deformatsii betona, vklyuchaya oblast, blizkuyu k razrusheniyu [Effect of multiaxial (complex) states of stress on strength and deformation of concrete, including the region close to the destruction] in the book Prochnost, zhestkost i treshchinostoykost zhelezobetonnykh konstruktsiy. Edited by A.A. Gvozdev (1979).

Google Scholar

[12] Geniyev, G.A., Kisyuk, V.N. K voprosu obobshcheniya teorii prochnosti betona. [The question generalizing the theory of strength of concrete] (1965) Beton i zhelezobeton, 2, p.16–29.

Google Scholar

[13] Kupfer, H.B. Das nicht-lineare Verhalten des Betons bei zweiachsiger Beanspruchung (1973) Beton und Stallhbetonbau, 11, p.269–273.

Google Scholar

[14] Sousa, R., Sousa, H., Guedes, J. Diagonal compressive strength of masonry samples – experimental and numerical approach (2013) Materials and Structures, 46, p.765–786.

DOI: 10.1617/s11527-012-9933-z

Google Scholar

[15] Massart, T.J., Peerlings, R.H.J., Geers, M.G.D., Gottcheiner, S. Mesoscopic modeling of failure in brick masonry accounting for three-dimensional effects (2005) Engineering Fracture Mechanics, 72, p.1238–1253.

DOI: 10.1016/j.engfracmech.2004.09.007

Google Scholar

[16] Polyakov, S.V. Issledovaniya po seysmostoykosti krupnopanelnykh i kamennykh zdaniy [Research on seismic stability of large-panel and masonry buildings] (1962) Gosstroyizdat, 289 p. (rus).

Google Scholar

[17] Polyakov, S.V., Konovodchenko, V.I., Prochnost i deformatsii vibrokirpichnykh paneley pri perekose. [Strength and deformation vibrated brick panels at skewed] in the book Seysmostoykost sbornykh krupnoelementnykh zdaniy (1963).

Google Scholar

[18] Polyakov, S.V., Safargaliyev, S.M. Seysmostoykost zdaniy s nesushchimi kirpichnymi stenami [Seismic resistance of buildings with load-bearing brick walls] (1988) Gylym, 188 p. (rus).

Google Scholar

[19] Polyakov, S.V., Safargaliyev, S.M. Monolitnost kamennoy kladki [Continuity of the masonry] (1991) Gylym, 160 p. (rus).

Google Scholar

[20] Kopanitca, D.G., Kabantcev, O.V., Useinov, E.S. Eksperimentalnye issledovaniia fragmentov kirpichnoi kladki na deistvie staticheskoi i dinamicheskoi nagruzki [Experimental researches masonry fragments on the effect of static and dynamic loads] (2012).

Google Scholar

[21] Kabantsev, O.V., Tamrazyan, A.G. Uchet izmeneniy raschetnoy skhemy pri analize raboty konstruktsii. [Structural behavior analysis taken into account changes of design model] (2014) Magazine of Civil Engineering, 5, p.15–26. (rus).

Google Scholar

[22] Tonkikh, G.P., Koshaev, V.V., Kabantcev, O.V. Eksperimentalnye issledovaniia nesushchei sposobnosti kombinirovannoi kamennoi kladki pri glavnykh nagruzkakh [Experimental researches the bearing capacity of masonry combined with major stresses] (2007).

Google Scholar

[23] Tonkikh, G.P., Kabantcev, O.V., Simakov, O.A., Simakov, A.B., Baev, S.M., Panfilov, P.S. Eksperimentalnye issledovaniia seismousileniia kamennoi kladki naruzhnymi betonnymi applikatciiami [Experimental researches seismic reinforcement of masonry by exterior concrete applications] (2011).

Google Scholar