Numerical Solution of the Nonlinear Wave Equation via Fourth-Order Time Stepping

Article Preview

Abstract:

Some nonlinear wave equations are more difficult to solve analytically. Exponential Time Differencing (ETD) technique requires minimum stages to obtain the required accurateness, which suggests an efficient technique relating to computational duration that ensures remarkable stability characteristics upon resolving the nonlinear wave equations. This article solves the non-diagonal example of Fisher equation via the exponential time differencing Runge-Kutta 4 method (ETDRK4). Implementation of the method is demonstrated by short Matlab programs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-219

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Whitman, Linear and nonlinear waves. J. Wiley, New York, (1974).

Google Scholar

[2] P. Gray, S.K. Scott, Chemical oscillations and instabilities: Non-linear chemical kinetics. (1990): Clarendon Press. Oxford University Press.

Google Scholar

[3] J.D. Murray, Mathematical biology: I. An introduction. Vol. 2. (2002), Springer.

Google Scholar

[4] W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am. J. Phys, 60(7)( 1992), pp.650-654.

DOI: 10.1119/1.17120

Google Scholar

[5] S. Cox, P. Matthews, Exponential time differencing for stiff systems. Journal of Computational Physics,. 176(2)( 2002), pp.430-455.

DOI: 10.1006/jcph.2002.6995

Google Scholar

[6] R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion. Electromagnetic Compatibility, IEEE Transactions on. 36(1) , (1994 ), pp.32-39.

DOI: 10.1109/15.265477

Google Scholar

[7] P.G. Petropoulos, Analysis of exponential time-differencing for FDTD in lossy dielectrics. Antennas and Propagation, IEEE Transactions on, 45(6)( 1997), pp.1054-1057.

DOI: 10.1109/8.585755

Google Scholar

[8] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. Journal of Computational Physics, 213(2) ( 2006) , pp.748-776.

DOI: 10.1016/j.jcp.2005.08.032

Google Scholar

[9] W. Wright, A partial history of exponential integrators. Department of Mathematical Sciences, NTNU, Norway. ( 2004).

Google Scholar

[10] J.D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM Journal on Numerical Analysis, 4(3) (1967): pp.372-380.

DOI: 10.1137/0704033

Google Scholar

[11] H. Berland, B. Owren, and B. Skaflestad, Solving the nonlinear Schrodinger equation using exponential integrators. Modeling, Identification and Control, 27(4)( 2006), pp.201-217.

DOI: 10.4173/mic.2006.4.1

Google Scholar

[12] A.K. Kassam, High order timestepping for stiff semilinear partial differential equations, (2004), University of Oxford.

Google Scholar

[13] H. Berland, B. Skaflestad, and W.M. Wright, EXPINT--A MATLAB package for exponential integrators. ACM Transactions on Mathematical Software (TOMS), 33(1)( 2007), p.4.

DOI: 10.1145/1206040.1206044

Google Scholar

[14] A.K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM Journal on Scientific Computing, 26(4)( 2005), pp.1214-1233.

DOI: 10.1137/s1064827502410633

Google Scholar

[15] S. Krogstad, Generalized integrating factor methods for stiff PDEs. Journal of Computational Physics, 203(1)( 2005), pp.72-88.

DOI: 10.1016/j.jcp.2004.08.006

Google Scholar

[16] C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. Electronic Transactions on Numerical Analysis, 29(2008), pp.116-135.

Google Scholar

[17] Z.A. Aziz, N. Yaacob, M. Askaripour, and M. Ghanbari, Fourth-Order Time Stepping for Stiff PDEs via Integrating Factor. Advanced Science Letters, 19(1) (2013), pp.170-173.

DOI: 10.1166/asl.2013.4667

Google Scholar

[18] Z. A . Aziz, M. Askaripour, and M . Ghanbari, A New Review of Exponential Integrator. Vol. 1. (2012), USA: CreateSpace 106.

Google Scholar

[19] L.N. Trefethen, Spectral methods in MATLAB. Vol. 10. ( 2000), Society for Industrial Mathematics.

Google Scholar

[20] Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, A review of the time discretization of semi linear parabolic problems. Research Journal of Applied Sciences, Engineering and Technology, 4(19)( 2012), pp.3539-3543.

Google Scholar

[21] Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, A review for the time integration of semi-linear stiff problems. Journal of Basic & Applied Scientific Research, 2(7)( 2012), pp.6441-6448.

Google Scholar

[22] Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, Split-Step Multi-Symplectic Method for Nonlinear Schrödinger Equation. Research Journal of Applied Sciences, Engineering and Technology, 4(19): pp.3858-3864.

Google Scholar

[23] Aziz, Z.A., N. Yaacob , M. Askaripour, and M . Ghanbari, A Numerical Approach for Solving a General Nonlinear Wave Equation. Research Journal of Applied Sciences, Engineering and Technology, 2012. 4(19)( 2012), pp.3834-3837.

Google Scholar

[24] M. Askaripour, Z.A. Aziz, M . Ghanbari, and H. Panj mini, A Note on Fourth-Order Time Stepping for Stiff PDE via Spectral Method. Applied Mathematical Sciences, 7(38)(2013), pp.1881-1889.

DOI: 10.12988/ams.2013.13170

Google Scholar