[1]
G. Whitman, Linear and nonlinear waves. J. Wiley, New York, (1974).
Google Scholar
[2]
P. Gray, S.K. Scott, Chemical oscillations and instabilities: Non-linear chemical kinetics. (1990): Clarendon Press. Oxford University Press.
Google Scholar
[3]
J.D. Murray, Mathematical biology: I. An introduction. Vol. 2. (2002), Springer.
Google Scholar
[4]
W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am. J. Phys, 60(7)( 1992), pp.650-654.
DOI: 10.1119/1.17120
Google Scholar
[5]
S. Cox, P. Matthews, Exponential time differencing for stiff systems. Journal of Computational Physics,. 176(2)( 2002), pp.430-455.
DOI: 10.1006/jcph.2002.6995
Google Scholar
[6]
R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion. Electromagnetic Compatibility, IEEE Transactions on. 36(1) , (1994 ), pp.32-39.
DOI: 10.1109/15.265477
Google Scholar
[7]
P.G. Petropoulos, Analysis of exponential time-differencing for FDTD in lossy dielectrics. Antennas and Propagation, IEEE Transactions on, 45(6)( 1997), pp.1054-1057.
DOI: 10.1109/8.585755
Google Scholar
[8]
M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. Journal of Computational Physics, 213(2) ( 2006) , pp.748-776.
DOI: 10.1016/j.jcp.2005.08.032
Google Scholar
[9]
W. Wright, A partial history of exponential integrators. Department of Mathematical Sciences, NTNU, Norway. ( 2004).
Google Scholar
[10]
J.D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM Journal on Numerical Analysis, 4(3) (1967): pp.372-380.
DOI: 10.1137/0704033
Google Scholar
[11]
H. Berland, B. Owren, and B. Skaflestad, Solving the nonlinear Schrodinger equation using exponential integrators. Modeling, Identification and Control, 27(4)( 2006), pp.201-217.
DOI: 10.4173/mic.2006.4.1
Google Scholar
[12]
A.K. Kassam, High order timestepping for stiff semilinear partial differential equations, (2004), University of Oxford.
Google Scholar
[13]
H. Berland, B. Skaflestad, and W.M. Wright, EXPINT--A MATLAB package for exponential integrators. ACM Transactions on Mathematical Software (TOMS), 33(1)( 2007), p.4.
DOI: 10.1145/1206040.1206044
Google Scholar
[14]
A.K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM Journal on Scientific Computing, 26(4)( 2005), pp.1214-1233.
DOI: 10.1137/s1064827502410633
Google Scholar
[15]
S. Krogstad, Generalized integrating factor methods for stiff PDEs. Journal of Computational Physics, 203(1)( 2005), pp.72-88.
DOI: 10.1016/j.jcp.2004.08.006
Google Scholar
[16]
C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. Electronic Transactions on Numerical Analysis, 29(2008), pp.116-135.
Google Scholar
[17]
Z.A. Aziz, N. Yaacob, M. Askaripour, and M. Ghanbari, Fourth-Order Time Stepping for Stiff PDEs via Integrating Factor. Advanced Science Letters, 19(1) (2013), pp.170-173.
DOI: 10.1166/asl.2013.4667
Google Scholar
[18]
Z. A . Aziz, M. Askaripour, and M . Ghanbari, A New Review of Exponential Integrator. Vol. 1. (2012), USA: CreateSpace 106.
Google Scholar
[19]
L.N. Trefethen, Spectral methods in MATLAB. Vol. 10. ( 2000), Society for Industrial Mathematics.
Google Scholar
[20]
Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, A review of the time discretization of semi linear parabolic problems. Research Journal of Applied Sciences, Engineering and Technology, 4(19)( 2012), pp.3539-3543.
Google Scholar
[21]
Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, A review for the time integration of semi-linear stiff problems. Journal of Basic & Applied Scientific Research, 2(7)( 2012), pp.6441-6448.
Google Scholar
[22]
Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, Split-Step Multi-Symplectic Method for Nonlinear Schrödinger Equation. Research Journal of Applied Sciences, Engineering and Technology, 4(19): pp.3858-3864.
Google Scholar
[23]
Aziz, Z.A., N. Yaacob , M. Askaripour, and M . Ghanbari, A Numerical Approach for Solving a General Nonlinear Wave Equation. Research Journal of Applied Sciences, Engineering and Technology, 2012. 4(19)( 2012), pp.3834-3837.
Google Scholar
[24]
M. Askaripour, Z.A. Aziz, M . Ghanbari, and H. Panj mini, A Note on Fourth-Order Time Stepping for Stiff PDE via Spectral Method. Applied Mathematical Sciences, 7(38)(2013), pp.1881-1889.
DOI: 10.12988/ams.2013.13170
Google Scholar