Numerical Solution of the Nonlinear Wave Equation via Fourth-Order Time Stepping

Abstract:

Article Preview

Some nonlinear wave equations are more difficult to solve analytically. Exponential Time Differencing (ETD) technique requires minimum stages to obtain the required accurateness, which suggests an efficient technique relating to computational duration that ensures remarkable stability characteristics upon resolving the nonlinear wave equations. This article solves the non-diagonal example of Fisher equation via the exponential time differencing Runge-Kutta 4 method (ETDRK4). Implementation of the method is demonstrated by short Matlab programs.

Info:

Periodical:

Edited by:

Khanittha Wongseedakaew and Qi Luo

Pages:

213-219

Citation:

M. A. Lahiji and Z. A. Aziz, "Numerical Solution of the Nonlinear Wave Equation via Fourth-Order Time Stepping", Applied Mechanics and Materials, Vol. 729, pp. 213-219, 2015

Online since:

January 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] G. Whitman, Linear and nonlinear waves. J. Wiley, New York, (1974).

[2] P. Gray, S.K. Scott, Chemical oscillations and instabilities: Non-linear chemical kinetics. (1990): Clarendon Press. Oxford University Press.

[3] J.D. Murray, Mathematical biology: I. An introduction. Vol. 2. (2002), Springer.

[4] W. Malfliet, Solitary wave solutions of nonlinear wave equations. Am. J. Phys, 60(7)( 1992), pp.650-654.

[5] S. Cox, P. Matthews, Exponential time differencing for stiff systems. Journal of Computational Physics,. 176(2)( 2002), pp.430-455.

DOI: https://doi.org/10.1006/jcph.2002.6995

[6] R. Holland, Finite-difference time-domain (FDTD) analysis of magnetic diffusion. Electromagnetic Compatibility, IEEE Transactions on. 36(1) , (1994 ), pp.32-39.

DOI: https://doi.org/10.1109/15.265477

[7] P.G. Petropoulos, Analysis of exponential time-differencing for FDTD in lossy dielectrics. Antennas and Propagation, IEEE Transactions on, 45(6)( 1997), pp.1054-1057.

DOI: https://doi.org/10.1109/8.585755

[8] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. Journal of Computational Physics, 213(2) ( 2006) , pp.748-776.

DOI: https://doi.org/10.1016/j.jcp.2005.08.032

[9] W. Wright, A partial history of exponential integrators. Department of Mathematical Sciences, NTNU, Norway. ( 2004).

[10] J.D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM Journal on Numerical Analysis, 4(3) (1967): pp.372-380.

DOI: https://doi.org/10.1137/0704033

[11] H. Berland, B. Owren, and B. Skaflestad, Solving the nonlinear Schrodinger equation using exponential integrators. Modeling, Identification and Control, 27(4)( 2006), pp.201-217.

DOI: https://doi.org/10.4173/mic.2006.4.1

[12] A.K. Kassam, High order timestepping for stiff semilinear partial differential equations, (2004), University of Oxford.

[13] H. Berland, B. Skaflestad, and W.M. Wright, EXPINT--A MATLAB package for exponential integrators. ACM Transactions on Mathematical Software (TOMS), 33(1)( 2007), p.4.

DOI: https://doi.org/10.1145/1206040.1206044

[14] A.K. Kassam, L.N. Trefethen, Fourth-order time-stepping for stiff PDEs. SIAM Journal on Scientific Computing, 26(4)( 2005), pp.1214-1233.

DOI: https://doi.org/10.1137/s1064827502410633

[15] S. Krogstad, Generalized integrating factor methods for stiff PDEs. Journal of Computational Physics, 203(1)( 2005), pp.72-88.

DOI: https://doi.org/10.1016/j.jcp.2004.08.006

[16] C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. Electronic Transactions on Numerical Analysis, 29(2008), pp.116-135.

[17] Z.A. Aziz, N. Yaacob, M. Askaripour, and M. Ghanbari, Fourth-Order Time Stepping for Stiff PDEs via Integrating Factor. Advanced Science Letters, 19(1) (2013), pp.170-173.

DOI: https://doi.org/10.1166/asl.2013.4667

[18] Z. A . Aziz, M. Askaripour, and M . Ghanbari, A New Review of Exponential Integrator. Vol. 1. (2012), USA: CreateSpace 106.

[19] L.N. Trefethen, Spectral methods in MATLAB. Vol. 10. ( 2000), Society for Industrial Mathematics.

[20] Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, A review of the time discretization of semi linear parabolic problems. Research Journal of Applied Sciences, Engineering and Technology, 4(19)( 2012), pp.3539-3543.

[21] Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, A review for the time integration of semi-linear stiff problems. Journal of Basic & Applied Scientific Research, 2(7)( 2012), pp.6441-6448.

[22] Z.A. Aziz, N. Yaacob , M. Askaripour, and M . Ghanbari, Split-Step Multi-Symplectic Method for Nonlinear Schrödinger Equation. Research Journal of Applied Sciences, Engineering and Technology, 4(19): pp.3858-3864.

[23] Aziz, Z.A., N. Yaacob , M. Askaripour, and M . Ghanbari, A Numerical Approach for Solving a General Nonlinear Wave Equation. Research Journal of Applied Sciences, Engineering and Technology, 2012. 4(19)( 2012), pp.3834-3837.

[24] M. Askaripour, Z.A. Aziz, M . Ghanbari, and H. Panj mini, A Note on Fourth-Order Time Stepping for Stiff PDE via Spectral Method. Applied Mathematical Sciences, 7(38)(2013), pp.1881-1889.

DOI: https://doi.org/10.12988/ams.2013.13170