[1]
Pontani, M., and Conway, B. A.: Particle Swarm Optimization Applied to Space Trajectories, Journal of Guidance, Control, and Dynamics, Vol. 33, No. 5, (2010).
DOI: 10.2514/1.48475
Google Scholar
[2]
Zhang Ding-ni, Liu Yi: Reentry trajectory optimization based on improved genetic algorithm and sequential quadratic programming. Journal of Zhejiang University (Engineering Science), 2014, 48(1): 161-167.
Google Scholar
[3]
Eberhart, R., and Kennedy, J: A New Optimizer Using Particle Swarm Theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science 1995, MHS '95, 1995, p.39–43.
DOI: 10.1109/mhs.1995.494215
Google Scholar
[4]
Jiao, B., Lian, Z., and Gu, X.: A Dynamic Inertia Weight Particle Swarm Optimization Algorithm, Chaos, Solitons and Fractals, Vol. 37, No. 3, 2008, p.698–705. doi: 10. 1016/j. chaos. 2006. 09. 063.
DOI: 10.1016/j.chaos.2006.09.063
Google Scholar
[5]
Premalatha, K., and Natarajan, A. M.: Hybrid PSO and GA for Global Maximization, International Journal of Open Problems in Computer Science and Mathematics, Vol. 2, No. 4, 2009, p.597–608.
Google Scholar
[6]
ZHOU Wenya, YANG Di, LI Shunli: Solution of reentry trajectory with maximum cross range by using Gauss pseudospectral method[J]. Systems Engineer ing and Electronic. 2010, 32(5): 1038–10 (in Chinese).
Google Scholar
[7]
Reza Kamyar, Ehsan Taheri,: Aircraft Optimal Terrain/Threat-Based Trajectory Planning and Control. Journal of Guidance, Control, and Dynamics. 2014, 37(2): 466-483.
DOI: 10.2514/1.61339
Google Scholar
[8]
J. Karimi, Seid H. Pourtakdoust: Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm[J]. Aerospace Science and Technology 26 (2013) 60–71.
DOI: 10.1016/j.ast.2012.02.014
Google Scholar