Statistical Analysis of the Magnetic Resonance Transmit Radiofrequency Field by the Saturated Turbo FLASH Method

Article Preview

Abstract:

The error propagation theory and Monte Carlo simulations were employed to quantitatively evaluate the robustness of the saturated Turbo FLASH (Fast Low Angle SHot, satTFL) method. The uncertainty and probability density function (PDF) of the satTFL were derived. An out-of-phase method was introduced to correct flip angles larger than 90 degrees. Monte Carlo simulations were implemented to estimate the impact of Gaussian white noises in the image domain and thus the sensitivity could be visualized for different flip angles and signal to noise ratios (SNRs). The uncertainty, Monte Carlo simulations and experiments show that the satTFL is more precise for flip angles around 90 degrees.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

572-576

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tincher, C.R. Meyer, R. Gupta and D.M. Williams: IEEE Trans. on Med. Imag. Vol. 12 (1993), p.361.

Google Scholar

[2] C. Siversson, J. Chan, C.J. Tiderius, T.C. Mamisch, V. Jellus, J. Svensson and Y.J. Kim: Magn. Reson. Med. Vol. 67 (2012) , p.1776.

Google Scholar

[3] E. Insko and L. Bolinger: J. Magn. Reson. Vol. 103 (1993), p.82.

Google Scholar

[4] S. Chung, D. Kim, E. Breton and L. Axel: Magn. Reson. Med. Vol. 64 (2010) , p.439.

Google Scholar

[5] G.R. Morrell: Magn. Reson. Med. Vol. 60 (2008), p.889.

Google Scholar

[6] V.L. Yarnykh: Magn. Reson. Med. Vol. 57 (2007), p.192.

Google Scholar

[7] L.I. Sacolick, F. Wiesinger, I. Hancu and M.W. Vogel: Magn. Reson. Med. Vol. 63 (2010), p.1315.

DOI: 10.1002/mrm.22357

Google Scholar

[8] U. Katscher, T. Voigt, C. Findeklee, P. Vernickel, K. Nehrke and O. Dossel: IEEE Trans. on Med. Imag. Vol. 28 (2009), p.1365.

DOI: 10.1109/tmi.2009.2015757

Google Scholar

[9] H. Homann, I. Graesslin, H. Eggers, K. Nehrke, P. Vernickel, U. Katscher, O. Dössel and P. Börnert: Magn. Reson. Mater. Phys. Biol. Med. Vol. 25 (2012), p.193.

DOI: 10.1007/s10334-011-0281-8

Google Scholar

[10] U. Katscher, P. Bornert, C. Leussler and J.S. van den Brink: Magn. Reson. Med. Vol. 49 (2003), p.144.

DOI: 10.1002/mrm.10353

Google Scholar

[11] Y. Zhu: Magn. Reson. Med. Vol. 51 (2004), p.775.

Google Scholar

[12] H-P. Fautz, M. Vogel, P. Gross, A. Kerr and Y. Zhu, in: Proc. of the ISMRM. p.1247 (2008).

Google Scholar

[13] R. Pohmann and K. Scheffler: NMR Biomed. Vol. 26 (2013), p.265.

Google Scholar

[14] G.R. Morrell and M.C. Schabel: Phys. Med. Biol. Vol. 55 (2010), p.6157.

Google Scholar

[15] D.J. Park, N.K. Bangerter, A. Javed, J. Kaggie, M.M. Khalighi and G.R. Morrell: Phys. Med. Biol. Vol. 58 (2013), p.5673.

DOI: 10.1088/0031-9155/58/16/5673

Google Scholar

[16] C.H. Cunningham, J.M. Pauly and K.S. Nayak: Magn. Reson. Med. Vol. 55 (2006), p.1326.

Google Scholar

[17] D. Wang, S. Zuehlsdorff and A.C. Larson: NMR Biomed. Vol. 22 (2009), p.882.

Google Scholar

[18] A. Papoulis and S.U. Pillai, Probability, Random Variables, and Stochastic Processes. (Tata McGraw-Hill, USA 2002).

Google Scholar

[19] J. Sijbers, A.J. den Dekker, P. Scheunders and D. van Dyck: IEEE Trans. on Med. Imag. Vol. 17 (1998), p.357.

DOI: 10.1109/42.712125

Google Scholar

[20] A. Amadon, M.A. Cloos, N. Boulant, M-F Hang, C.J. Wiggins and H-P. Fautz, in: Proc. of the ISMRM. p.3358 (2012).

Google Scholar

[21] H-P. Fautz, R. Gumbrecht, P. Gross and F. Schmitt, in: Proc. of the ISMRM. p.3363 (2012).

Google Scholar