Potential Energy Curves and Spectroscopic Properties of C-2 Studied by Configuration Interaction Method

Article Preview

Abstract:

Using multi reference configuration interaction (MRCI) method, with aug-cc-pV5Z, aug-cc-pv6z, aug-cc-pcv5z, aug-cc-pcv6z basis sets etc., the single point energy of the ground state and the first excited state and second excited state of C-2 are calculated. Then LEVEL program is used to fit out the spectroscopic constants of three states. Results obtained by MRCI/aug-cc-pcv5z-dk method are close to the experimental values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-109

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Dalgarno and J. H. Black: Rep. Prog. Phys. Vol. 39 (1976), p.573.

Google Scholar

[2] Brunken, H. Gupta, C. A. Gottlieb, M. C. McCarthy and P. Thaddeus: Astrophys.J. Vol. 664 (2007), p. L43.

Google Scholar

[3] H. F. Calcote, D. B. Olson and D. G. Keil: Energy Fuels Vol. 2 (1988), p.494.

Google Scholar

[4] A. Gallagher, A. A. Howling and C. Hollenstein: J. Appl. Phys. Vol. 91 (2002), p.5571.

Google Scholar

[5] K. Homann: Angew. Chem. Int. Ed. Engl. Vol. 37 (1998), p.2434.

Google Scholar

[6] R. P. Wayne: Chemistry of Atmospheres an Introduction to the Chemistry of the Atmospheres of Earth, the Planets, and Their Satellites(3rd edn) (Oxford University Press, Oxford 2002).

DOI: 10.1021/ja004780n

Google Scholar

[7] J. Prager, U. Riedel and J. Warnatz: Proc. Combust. Inst. Vol. 31 ( 2007), p.1129.

Google Scholar

[8] J. M. Rodrigues, A. Agneray, X. Jaffrezic, M. Bellenoue, S. Labuda, C. Leys, A. P. Chernukho, A. N. Migoun, A. Cenian, A. M. Savel'ev, N. S. Titova and A. M. Starik: PlasmaSourcesSci. Technol. Vol. 16 (2007), p.161.

DOI: 10.1088/0963-0252/16/1/021

Google Scholar

[9] A. M. Starik, A. M. Savel'ev, N. S. Titova, U. Schumann: Aerosp. Sci. Technol. Vol. 6 (2002), p.63.

Google Scholar

[10] Marek Tulej, Gregor Knopp, Thomas Gerber and Peter P. Radi: J. Raman Spectrosc. Vol. 41 (2010), p.853.

Google Scholar

[11] T ŠEDIVCOVÁ and V. ŠPIRKO: Mol. Phys. Vol. 104 (2006), p. (1999).

Google Scholar

[12] T. Andersen: Phys. Scr. Vol. T43(1991), p.23.

Google Scholar

[13] Shanshan Yu, Xiaohua Yang, Benxia Li, Kaniki Kakule, Shenghai Wu, Yingchun Guo, Yuyan Liu, Yangqin Chen: Chin. Phys. Vol. 12 (2003), p.0745.

Google Scholar

[14] M. S. Varday and K S. Krishna Swamy: Chem. Phys. Lett. Vol. (73) (1980), p.616.

Google Scholar

[15] Wallerstein G: Astron. Astrophys. Vol. 105 (1982), p.105.

Google Scholar

[16] G Herzberg and A Lagerqvist: Can. J. Phys. Vol. 46 (1968), p.2363.

Google Scholar

[17] W C Lineberger and T. A Patterson: Chem. Phys. Lett. Vol. 13 (1972), p.40.

Google Scholar

[18] Roy D Mead, U. Hefter, P A Schulz, W C Lineberger: J. Chem. Phys. Vol. 82 (1985), p.1723.

Google Scholar

[19] Brent D. Rehfuss, Dijia Liu., Bianca M. Dinelli, MaryFrances Jagod, Wing C. Ho, Mark W Crofton and Takeshi Oka: Chem. Phys. Vol. 89 (1988), p.129.

Google Scholar

[20] P. Royen and M. Zackrisson: J. Mol. Spectrose. Vol. 155 (1992), p.427.

Google Scholar

[21] Weltner W, Van Zee R J: Chem. Rev. Vol. 89 (1989), p.1713.

Google Scholar

[22] Watts J D and Bartlett R J: J. Chem. Phys. Vol. 96 (1992), p.6073.

Google Scholar

[23] Iran N. Levine: Quantum Chemistry (sixth edition) ( World Book Inc, Beijing) (2011), p.471.

Google Scholar

[24] H. -J. Werner and P.J. Knowles: J. Chem. Phys. Vol. 89 (1988), p.5803.

Google Scholar

[25] P.J. Knowles and H. -J. Werner: Chem. Phys. Lett. Vol. 145 (1988), p.514.

Google Scholar

[26] H. -J. Werner and E.A. Reinsch: J. Chem. Phys. Vol. 76 (1982), p.3144.

Google Scholar

[27] H. -J. Werner: Adv. Chem. Phys. Vol. LXIX (1987), p.1.

Google Scholar

[28] P. J. Knowles and H. -J. Werner: Theor. Chim. Acta Vol. 84(1992), p.95.

Google Scholar

[29] MOLPRO, version 2009. 1, a package of ab initio programs, H. -J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Sch¨utz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. K¨oppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pfl¨uger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, see http: /www. molpro. net.

Google Scholar

[30] LeRoy R J, LEVEL 7. 1 : A computer program for solving the radial Schrodinger Equation for bound and quasibound levels. University of Waterloo Chemical Physics Research Report CP-G42R(2000).

Google Scholar

[31] Oi Oian, Chuanlu Yang, Feng Gao and Xiaoyan Zhang: Acta Phys. Sin-Ch Ed. Vol. 08 (2007), p.4420 in Chinese.

Google Scholar

[32] Xinqiang Wang, Chuanlu Yang, Tao Su and Meishan Wang: Acta Phys. Sin-Ch Ed. Vol. 10 (2009), p.6873 in Chinese.

Google Scholar

[33] M. Reiher and A. Wolf: J. Chem. Phys. Vol. 121 (2004), p. (2037).

Google Scholar

[34] M. Reiher and A. Wolf, J. Chem. Phys. Vol. 121 (2004), p.10945.

Google Scholar

[35] A. Wolf, M. Reiher and B. A. Hess, J. Chem. Phys. Vol. 117 (2002), p.9215.

Google Scholar