Natural Convection of Nanofluids in Enclosures Heated Laterally and Underneath

Article Preview

Abstract:

A two-phase mixture model is used to study natural convection in a square cavity filled with CuO+H2O nanofluids, in the hypothesis of temperature-dependent physical properties, assuming that Brownian diffusion and thermophoresis are the primary slip mechanisms between solid and liquid phases. The cavity is heated at one side and cooled at the opposite side, whereas the horizontal walls are assumed either both adiabatic, or the bottom heated and the top cooled. A computational code based on the SIMPLE-C algorithm is used to solve the system of the mass, momentum and energy transfer governing equations. It is found that, owing to the effects of the slip motion occurring between solid and liquid phases, the rate of heat transferred across the cavity by the nanofluid in the heating-from-below configuration is remarkably higher than that transferred by the pure base liquid. Moreover, in this particular configuration the addition of nanoparticles to the base liquid generates periodicity in heat transfer. Additionally, the heat transfer enhancement is discovered to increase as the imposed temperature difference is increased, showing a smooth maximum at an optimal particle loading.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-312

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Putra, W. Roetzel, S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer 39 (2003) 775-784.

DOI: 10.1007/s00231-002-0382-z

Google Scholar

[2] D. Wen, Y. Ding, Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat Fluid Flow 26 (2005) 855-864.

DOI: 10.1016/j.ijheatfluidflow.2005.10.005

Google Scholar

[3] A. G. A. Nnanna, Experimental model of temperature-driven nanofluid, J. Heat Transfer 129 (2007) 697-704.

DOI: 10.1115/1.2717239

Google Scholar

[4] B. H. Chang, A. F. Mills, E. Hernandez, Natural convection of microparticle suspensions in thin enclosures, Int. J. Heat Mass Transfer 51 (2008) 1332-1341.

DOI: 10.1016/j.ijheatmasstransfer.2007.11.030

Google Scholar

[5] C. J. Ho, W. K. Liu, Y. S. Chang, C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, Int. J. Thermal Sciences 49 (2010) 1345-1353.

DOI: 10.1016/j.ijthermalsci.2010.02.013

Google Scholar

[6] Y. Hu, Y. He, S. Wang, Q. Wang, H. I. Schlaberg, Experimental and numerical investigation on natural convection heat transfer of TiO2-water nanofluids in a square enclosure, ASME J. Heat Transfer 136 (2014) 022502.

DOI: 10.1115/1.4025499

Google Scholar

[7] H. Aminfar, M. R. Haghgoo, Brownian motion and thermophoresis effects on natural convection of alumina-water nanofluid, J. Mech. Eng. Science 227 (2012) 100-110.

DOI: 10.1177/0954406212445683

Google Scholar

[8] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 240-250.

DOI: 10.1115/1.2150834

Google Scholar

[9] S. K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer 46 (2003) 851-862.

DOI: 10.1016/s0017-9310(02)00348-4

Google Scholar

[10] R. Prasher, D. Song, J. Wang, P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett. 89 (2006) 133108.

DOI: 10.1063/1.2356113

Google Scholar

[11] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer 50 (2007) 2272-2281.

DOI: 10.1016/j.ijheatmasstransfer.2006.10.024

Google Scholar

[12] H. Chen, Y. Ding, Y. He, C. Tan, Rheological behaviour of ethylene glycol based titania nanofluids, Chem. Phys. Lett. 444 (2007) 333-337.

DOI: 10.1016/j.cplett.2007.07.046

Google Scholar

[13] J. Chevalier, O. Tillement, F. Ayela, Rheological properties of nanofluids flowing through microchannels, Appl. Phys. Lett. 91 (2007) 233103.

DOI: 10.1063/1.2821117

Google Scholar

[14] D. Cabaleiro, M. J. Pastoriza-Gallego, M. M. Piñero, L. Lugo, Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1, 2-diol + water) mixture, J. Chem. Thermodynamics 58 (2013).

DOI: 10.1016/j.jct.2012.10.014

Google Scholar

[15] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (in German), Ann. Phys. 17 (1905) 549-560.

DOI: 10.1002/andp.19053220806

Google Scholar

[16] M. Corcione, A. Quintino, A correlation for the prediction of the thermophoretic diffusion effects on natural convection of nanofluids, Int. J. Thermal Sciences, submitted (2014).

Google Scholar

[17] M. Cianfrini, M. Corcione, A. Quintino, Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders, Applied Thermal Engineering 31 (2011) 4055-4063.

DOI: 10.1016/j.applthermaleng.2011.08.010

Google Scholar

[18] M. Corcione, M. Cianfrini, E. Habib, A. Quintino, Optimization of free convection heat transfer from vertical plates using nanofluids, J. Heat Transfer 134 (2012) 042501.

DOI: 10.1115/1.4005108

Google Scholar

[19] J. P. Van Doormaal, G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer 11 (1984) 147-163.

DOI: 10.1080/10407798408546946

Google Scholar

[20] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (1972) 1787-1797.

DOI: 10.1016/0017-9310(72)90054-3

Google Scholar

[21] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC (1980).

Google Scholar

[22] B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng. 19 (1979) 59-78.

DOI: 10.1016/0045-7825(79)90034-3

Google Scholar

[23] R. Bennacer, A. A. Mohamad, D. Akrour, Transient natural convection in an enclosure with horizontal temperature and vertical solutal gradients, Int. J. Thermal Sciences 40 (2001) 899-910.

DOI: 10.1016/s1290-0729(01)01276-5

Google Scholar

[24] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids 3 (1983) 249-264.

DOI: 10.1002/fld.1650030305

Google Scholar

[25] H. S. Mahdi, R. B. Kinney, Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids 11 (1990) 57-86.

DOI: 10.1002/fld.1650110105

Google Scholar

[26] M. Hortmann, M. Peric, G. Scheuerer, Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids 11 (1990) 189-207.

DOI: 10.1002/fld.1650110206

Google Scholar

[27] D. C. Wan, B. S. V. Patnaik, G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Num. Heat Transfer 40 (2001) 199-228.

DOI: 10.1080/104077901752379620

Google Scholar

[28] A. Bejan, Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2004).

Google Scholar

[29] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2007).

Google Scholar

[30] C. Béghein, F. Haghigat, F. Allard, Numerical study of double-diffusive natural convection in a square cavity, Int. J. Heat Mass Transfer 35 (1992) 833-846.

DOI: 10.1016/0017-9310(92)90251-m

Google Scholar