[1]
N. Putra, W. Roetzel, S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer 39 (2003) 775-784.
DOI: 10.1007/s00231-002-0382-z
Google Scholar
[2]
D. Wen, Y. Ding, Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat Fluid Flow 26 (2005) 855-864.
DOI: 10.1016/j.ijheatfluidflow.2005.10.005
Google Scholar
[3]
A. G. A. Nnanna, Experimental model of temperature-driven nanofluid, J. Heat Transfer 129 (2007) 697-704.
DOI: 10.1115/1.2717239
Google Scholar
[4]
B. H. Chang, A. F. Mills, E. Hernandez, Natural convection of microparticle suspensions in thin enclosures, Int. J. Heat Mass Transfer 51 (2008) 1332-1341.
DOI: 10.1016/j.ijheatmasstransfer.2007.11.030
Google Scholar
[5]
C. J. Ho, W. K. Liu, Y. S. Chang, C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, Int. J. Thermal Sciences 49 (2010) 1345-1353.
DOI: 10.1016/j.ijthermalsci.2010.02.013
Google Scholar
[6]
Y. Hu, Y. He, S. Wang, Q. Wang, H. I. Schlaberg, Experimental and numerical investigation on natural convection heat transfer of TiO2-water nanofluids in a square enclosure, ASME J. Heat Transfer 136 (2014) 022502.
DOI: 10.1115/1.4025499
Google Scholar
[7]
H. Aminfar, M. R. Haghgoo, Brownian motion and thermophoresis effects on natural convection of alumina-water nanofluid, J. Mech. Eng. Science 227 (2012) 100-110.
DOI: 10.1177/0954406212445683
Google Scholar
[8]
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 240-250.
DOI: 10.1115/1.2150834
Google Scholar
[9]
S. K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer 46 (2003) 851-862.
DOI: 10.1016/s0017-9310(02)00348-4
Google Scholar
[10]
R. Prasher, D. Song, J. Wang, P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett. 89 (2006) 133108.
DOI: 10.1063/1.2356113
Google Scholar
[11]
Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer 50 (2007) 2272-2281.
DOI: 10.1016/j.ijheatmasstransfer.2006.10.024
Google Scholar
[12]
H. Chen, Y. Ding, Y. He, C. Tan, Rheological behaviour of ethylene glycol based titania nanofluids, Chem. Phys. Lett. 444 (2007) 333-337.
DOI: 10.1016/j.cplett.2007.07.046
Google Scholar
[13]
J. Chevalier, O. Tillement, F. Ayela, Rheological properties of nanofluids flowing through microchannels, Appl. Phys. Lett. 91 (2007) 233103.
DOI: 10.1063/1.2821117
Google Scholar
[14]
D. Cabaleiro, M. J. Pastoriza-Gallego, M. M. Piñero, L. Lugo, Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1, 2-diol + water) mixture, J. Chem. Thermodynamics 58 (2013).
DOI: 10.1016/j.jct.2012.10.014
Google Scholar
[15]
A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (in German), Ann. Phys. 17 (1905) 549-560.
DOI: 10.1002/andp.19053220806
Google Scholar
[16]
M. Corcione, A. Quintino, A correlation for the prediction of the thermophoretic diffusion effects on natural convection of nanofluids, Int. J. Thermal Sciences, submitted (2014).
Google Scholar
[17]
M. Cianfrini, M. Corcione, A. Quintino, Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders, Applied Thermal Engineering 31 (2011) 4055-4063.
DOI: 10.1016/j.applthermaleng.2011.08.010
Google Scholar
[18]
M. Corcione, M. Cianfrini, E. Habib, A. Quintino, Optimization of free convection heat transfer from vertical plates using nanofluids, J. Heat Transfer 134 (2012) 042501.
DOI: 10.1115/1.4005108
Google Scholar
[19]
J. P. Van Doormaal, G. D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Num. Heat Transfer 11 (1984) 147-163.
DOI: 10.1080/10407798408546946
Google Scholar
[20]
S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (1972) 1787-1797.
DOI: 10.1016/0017-9310(72)90054-3
Google Scholar
[21]
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publ. Co., Washington, DC (1980).
Google Scholar
[22]
B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comp. Meth. in Appl. Mech. Engng. 19 (1979) 59-78.
DOI: 10.1016/0045-7825(79)90034-3
Google Scholar
[23]
R. Bennacer, A. A. Mohamad, D. Akrour, Transient natural convection in an enclosure with horizontal temperature and vertical solutal gradients, Int. J. Thermal Sciences 40 (2001) 899-910.
DOI: 10.1016/s1290-0729(01)01276-5
Google Scholar
[24]
G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Num. Meth. Fluids 3 (1983) 249-264.
DOI: 10.1002/fld.1650030305
Google Scholar
[25]
H. S. Mahdi, R. B. Kinney, Time-dependent natural convection in a square cavity: application of a new finite volume method, Int. J. Num. Meth. Fluids 11 (1990) 57-86.
DOI: 10.1002/fld.1650110105
Google Scholar
[26]
M. Hortmann, M. Peric, G. Scheuerer, Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Num. Meth. Fluids 11 (1990) 189-207.
DOI: 10.1002/fld.1650110206
Google Scholar
[27]
D. C. Wan, B. S. V. Patnaik, G. W. Wei, A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Num. Heat Transfer 40 (2001) 199-228.
DOI: 10.1080/104077901752379620
Google Scholar
[28]
A. Bejan, Convection Heat Transfer, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2004).
Google Scholar
[29]
F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey (2007).
Google Scholar
[30]
C. Béghein, F. Haghigat, F. Allard, Numerical study of double-diffusive natural convection in a square cavity, Int. J. Heat Mass Transfer 35 (1992) 833-846.
DOI: 10.1016/0017-9310(92)90251-m
Google Scholar