Numerical Simulation of Dispersion of Radionuclides Released from the Fukushima NPP and the Assessment of their Nuclear Impact

Article Preview

Abstract:

A large number of radionuclides were discharged into oceans after the Fukushima nuclear crisis. In this paper, we employed ROMS to simulate the circulation of water around Japan. We evaluated the temporal and spatial distribution of radionuclides originated from Fukushima NPP, such as: Cs-137, Cs-134 and I-131. Then, we utilized MCNP 5 to assess the external nuclear impact of these nuclides in water and obtained the effective dose rate distribution in the coast water around Fukushima NPP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

417-421

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Tsumune, T. Tsubono, M. Aoyama, et al, Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model, J. Environ. Radioact. 111 (2011) 100-108.

DOI: 10.1016/j.jenvrad.2011.10.007

Google Scholar

[2] C. Estournel, E. Bosc, M. Bocquet, et al, Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters, J. Geophys. Res. 117 (2012) C11014.

DOI: 10.1029/2012jc007933

Google Scholar

[3] Z. Lai, C. Chen, R. Beardsley, et al, Initial spread of137Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf: a study using a high-resolution, global-coastal nested ocean model, Biogeosciences 10(2013) 5439-5449.

DOI: 10.5194/bg-10-5439-2013

Google Scholar

[4] Y. Guan, S. Shen, H. Huang, The numerical simulation of caesium-137 transportation in ocean and the assessment of its radioactive impacts after Fukushima NPP release, Sci. China Earth Sci. (in Press).

DOI: 10.1007/s11430-014-5032-z

Google Scholar

[5] A.F. Shchepetkin, J.C. Mcwilliams, The regional oceanic modeling system: a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model. 9 (2005) 347-404.

DOI: 10.1016/j.ocemod.2004.08.002

Google Scholar

[6] Department of Commerce NOAA: 2-minute Gridded Global Relief Data (ETOPO2v2) (2006).

Google Scholar

[7] E.P. Chassignet, H.E. Hurlburt, O.M. Smedstad, et al, The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system, J. Mar. Syst. 65 (2007) 60-83.

DOI: 10.1016/j.jmarsys.2005.09.016

Google Scholar

[8] K.O. Buesseler, S.R. Jayne, N.S. Fisher, et al, Fukushima-derived radionuclides in the ocean and biota off Japan, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 5984-5988.

DOI: 10.1073/pnas.1120794109

Google Scholar

[9] M.C. Honda, T. Aono, M. Aoyama, et al, Dispersion of artificial caesium-134 and-137 in the western North Pacific one month after the Fukushima accident, Geochem. J. 46 (2012) E1-E9.

DOI: 10.2343/geochemj.1.0152

Google Scholar

[10] M. Aoyama, D. Tsumune, Y. Hamajima, Distribution of 137Cs and 134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident, J. Radioanal. Nucl. Chem. 296 (2013) 535-539.

DOI: 10.1007/s10967-012-2033-2

Google Scholar

[11] M. Nakano, P.P. Povinec, Long-term simulations of the Cs-137 dispersion from the Fukushima accident in the world ocean, J. Environ. Radioact. 111 (2011) 109-115.

DOI: 10.1016/j.jenvrad.2011.12.001

Google Scholar

[12] X-5 Monte Carlo Team: MCNP - A General N-Particle Transport Code, Version 5. Manual (2003).

Google Scholar