[1]
B.Q. Zhou, Y.L. Li, H.H. Xia, Q. Li, The influence of Fe3+ and Al3+on scale inhibition, Water Treat. Technol. 2 (2004) 85-86.
Google Scholar
[2]
C.H. He, J. Feng, H.S. Li, D. Wang, Evaluation of Fouling Inhibitors'Performance by Using Limited Carbonate Hardness Method, Corros. Protect. Petrochem. Ind. 4 (2008) 14-16.
Google Scholar
[3]
B.Q. Zhou, H.D. Xu, Q. Li, Z.J. Li, Evaluation Method for Special Scale Inhibitor of Reverse Osmosis,N. China Electr. Power. 4 (2005) 43-45.
Google Scholar
[4]
L.J. Jing, P. Wang, F. Wang, X.X. Wang, Synthesis and running performance of a new type quadripolymer scale and corrosion inhibitor PMASH, Mod. Chem. Ind. (8) 2011 38-41.
Google Scholar
[5]
G.L. Jiao, Y.P. Wang, Y. Pu, Methods and discussion of representation for scale inhibitor performance, Gansu Sci. Technol. 2 (2011) 49-51.
Google Scholar
[6]
Y.H. Suan, Y. Wang, W.H. Xiang, Property evaluation of polyepoxysuccinic acid with conductometric titration method, Therm. Power. Gener. 5 (2009) 35-37.
Google Scholar
[7]
J. Fang, G.B. Li, Z.Y. Yan, J. Li, To evaluate the effectiveness of chemical scale inhibitor by constant composition method, Ind. Water. Treat. 12 (2001) 17-20.
Google Scholar
[8]
K. Xue, Q.F. Yang. Dynamic evaluation methods for anti-scalants in reverse osmosis titration systems, Chem. Ind. Eng. Prog. 8 (2006) 907-910.
Google Scholar
[9]
Drak, K. Glucina, M. Busch, D. Hasson, J.M. Laine, and R. Semiat, Laboratory Technique for Predicting the Scaling Propensity of RO Feed Waters, Desalination, 132 (2000) 233-242. method, Therm. Power. Gener. 5 (2009) 35-37.
DOI: 10.1016/s0011-9164(00)00154-5
Google Scholar