[1]
Sabatier, J., C. Farges, and J.C. Trigeassou, Fractional systems state space description: some wrong ideas and proposed solutions. Journal of Vibration and Control, (2013).
DOI: 10.1177/1077546313481839
Google Scholar
[2]
Trigeassou, J. and N. Maamri. The initial conditions of Riemman-Liouville and Caputo derivatives: an integrator interpretation. in FDA'2010 Conference, Badajoz, Spain. (2010).
Google Scholar
[3]
Trigeassou, J.C., et al., State variables and transients of fractional order differential systems. Computers & Mathematics with Applications, 2012. 64(10): pp.3117-3140.
DOI: 10.1016/j.camwa.2012.03.099
Google Scholar
[4]
Trigeassou, J.C., et al., Transients of fractional-order integrator and derivatives. Signal, Image and Video Processing, 2012. 6(3): pp.359-372.
DOI: 10.1007/s11760-012-0332-2
Google Scholar
[5]
Trigeassou, J.C. and N. Maamri, Initial conditions and initialization of linear fractional differential equations. Signal Processing, 2011. 91(3): pp.427-436.
DOI: 10.1016/j.sigpro.2010.03.010
Google Scholar
[6]
Lorenzo, C.F. and T.T. Hartley, Initialization of Fractional-Order Operators and Fractional Differential Equations. Journal of Computational and Nonlinear Dynamics, 2008. 3(2): p.021101.
DOI: 10.1115/1.2833585
Google Scholar
[7]
Hartley TT, L.C., The error incurred using the Caputo-derivative Laplace transform. proceedings of the ASME international design engineering technical con- ference, DETC2007-87648, San Diego, CA, 30 August-2 September., (2009).
Google Scholar
[8]
C.F. Lorenzo, H.T.T., Time-varying initialization and Laplace transform of the Caputo derivative: with order between zero and one. Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2011 August 28-31, 2011, Washington, DC, USA.
DOI: 10.1115/detc2011-47396
Google Scholar
[9]
Faieghi, M.R., H. Delavari, and D. Baleanu, A note on stability of sliding mode dynamics in suppression of fractional-order chaotic systems. Computers & Mathematics with Applications, 2013. 66(5): pp.832-837.
DOI: 10.1016/j.camwa.2012.11.015
Google Scholar
[10]
Trigeassou, J.C., et al., A Lyapunov approach to the stability of fractional differential equations. Signal Processing, 2011. 91(3): pp.437-445.
DOI: 10.1016/j.sigpro.2010.04.024
Google Scholar
[11]
Yuan J, Shi B, Ji W. Adaptive Sliding Mode Control of a Novel Class of Fractional Chaotic Systems[J]. Advances in Mathematical Physics, (2013).
DOI: 10.1155/2013/576709
Google Scholar
[12]
Roopaei, M., B.R. Sahraei, and T. -C. Lin, Adaptive sliding mode control in a novel class of chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 2010. 15(12): pp.4158-4170.
DOI: 10.1016/j.cnsns.2010.02.017
Google Scholar
[13]
Dadras, S. and H.R. Momeni, Control of a fractional-order economical system via sliding mode. Physica A: Statistical Mechanics and its Applications, 2010. 389(12): pp.2434-2442.
DOI: 10.1016/j.physa.2010.02.025
Google Scholar
[14]
Chen, D. -y., et al., Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dynamics, 2011. 67(1): pp.893-901.
DOI: 10.1007/s11071-011-0002-x
Google Scholar
[15]
Yin, C., S. -m. Zhong, and W. -f. Chen, Design of sliding mode controller for a class of fractionalorder chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 2012. 17(1): pp.356-366.
DOI: 10.1016/j.cnsns.2011.04.024
Google Scholar