The B4-Modalized Propositional Logic

Article Preview

Abstract:

A modalized propositional Belnap-Dunn logic will be proposed in this paper which thereare four modalities [t]; [T]; [⊥]; [f] to represent the four values t;T;⊥; f; respectively, and a Gentzentypeddeduction system will be given so that the the system is sound and complete with the four-valuedsemantics of the Belnap-Dunn logic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-346

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Belnap (1977a): How a computer should think. In G. Ryle (edt. ), Contemporary Aspects of Philosophy, pages 30-56. Oriel Press, (1977).

Google Scholar

[2] N. Belnap (1977b): A useful four-valued logic. In J. M. Dunn and G. Epstein (eds. ), Modern Uses of Multiple-valued Logic, pages 8-37. D. Reidel.

DOI: 10.1007/978-94-010-1161-7_2

Google Scholar

[3] J. A. Bergstra and A. Ponse(1998): Kleene's three-valued logic and process algebra. Information Processing Letters, 67(2): 95-103.

DOI: 10.1016/s0020-0190(98)00083-0

Google Scholar

[4] J. M. Font (1997): Belnap's four-valued logic and De Morgan lattices. Logic Journal of the I.G.P.L., 5(3): 413-440.

Google Scholar

[5] W. Li (2010): Mathematical Logic, Foundations for Information Science, Progress in Computer Science and Applied Logic, vol. 25, Birkhäuser.

Google Scholar

[6] A. P. Pynko (1995b): Characterizing Belnap's logic via De Morgan's laws. Mathematical Logic Quarterly, 41(4): 442-454.

DOI: 10.1002/malq.19950410403

Google Scholar

[7] A. P. Pynko (1999): Implicational classes of De Morgan lattices. Discrete Math., 205(1-3): 171-181.

DOI: 10.1016/s0012-365x(99)00007-2

Google Scholar

[8] O. Rodrigues and A. Russo (1998): A translation method for Belnap logic. Imperial College RR DoC98/7.

Google Scholar