A Parameter Estimation Method for Bridges Based on Field Measured Influence Lines

Article Preview

Abstract:

A method for bridge structural parameter identification using field measured static influence lines with respect to various types of measurement is presented. Static test data on displacement, tilts and strains are quantified by means of influence lines to estimate global and local, sensitive and insensitive parameters of any model form of structure. A quadratic performance error function to be minimized was established with interpolation or fitting procedures. An analytical example of a simply supported beam is employed for demonstration purpose. A numerical example of plane stress is presented and local and insensitive parameters are successfully and accurately estimated. Results of the example suggest that despite no competitive advantage in estimating the sensitive parameters with integrative measurement, it is an essential point to the successful identification of insensitive parameters by making a judicious selection of integrative measurement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

726-738

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Aktan, A.E., Helmicki, A.J., and Hunt, V.J., (1998). Issues in health-monitoring for intelligent infrastructure., Smart Material and Structures, 7(5), 674-692.

Google Scholar

[2] Allemang, R.J., Brown, D.L., and Fladung, W., (1994). Modal parameter estimation: A unified matrix polynomial approach., 12th International Modal Analysis Conference, Society of Experimental Mechanics, Honolulu, Hawaii.

Google Scholar

[3] Allemang, R.J., (1995). Vibrations: Experimental modal analysis., UC-SDRL-CN-20-263-663/664, University of Cincinnati, Cincinnati, OH.

Google Scholar

[4] Banan, Mo. R., Banan, Ma. R., and Hjelmstad, K. D. (1994). Parameter estimation of structures from static response. I: Computational aspects., J. Struct. Engrg., 120(11), 3243-3258.

DOI: 10.1061/(asce)0733-9445(1994)120:11(3243)

Google Scholar

[5] Belegundu, A.D., (1988). The adjoint method for determining influence lines., Computers and Structures, 29(2), 345-350.

DOI: 10.1016/0045-7949(88)90269-6

Google Scholar

[6] Bruno, R. J. (1994). Identification of nonlinear joints in a truss structure., Proc., AlAAIASME Adaptive Struct. Forum, Am. Inst. of Aeronautics and Astronautics (AIAA), Washington, D.C., 402-410.

Google Scholar

[7] Farrar C.R., Sohn, H., Hemez, F.M., Anderson, M.C., Bement, M.T., Corwell, P.J., Doebling, S.W., Schultze, J.F., Lieven, N., and Robertson, A.N., (2003).

Google Scholar

[8] Hajela, P., and Soeiro, F. J. (1990). Structural damage detection based on static and modal analysis., AIAA J., 28(9), 1110-1115.

DOI: 10.2514/3.25174

Google Scholar

[9] InhoYeo, Soobong Shin, Hae Sung Lee, and Sung-Pil Chang, (2000). Statistical damage assessment of framed structures from static responses., J. Eng. Mech., 126(4), 414-421.

DOI: 10.1061/(asce)0733-9399(2000)126:4(414)

Google Scholar

[10] Jing Cai, Zhishen Wu, (2001). Statistical damage localization and assessment of frame structures from static test data., Journal of Structural Engineering, 47A(3), 9-18.

Google Scholar

[11] Jingbo Liao, Guangwu Tang, Fei Pan, (2012a). Finite element model updating based on field quasi-static generalized influence line and its bridge engineering application., Procedia Engineering, 31, 348-353.

DOI: 10.1016/j.proeng.2012.01.1035

Google Scholar

[12] Jingbo Liao, Guangwu Tang, Fei Pan, (2012b). Finite element model updating of existing T-Girder bridge by field quasi-static generalized influence line., Applied Mechanics and Materials, 226-228, 1609-1613.

DOI: 10.4028/www.scientific.net/amm.226-228.1609

Google Scholar

[13] Kansa, E.J., (1990). Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics., Comp. Math. Applic., 19(8/9), 127-161.

DOI: 10.1016/0898-1221(90)90270-t

Google Scholar

[14] Lee, J.J., and Yun, C.B. (2006). Two-step approaches for effective bridge health monitoring., Structural Engineering and Mechanics, 23(1), 75-95.

DOI: 10.12989/sem.2006.23.1.075

Google Scholar

[15] Maia, N.M.M., and Silva, J.M.M., Eds., (1997). Theoretical and experimental modal analysis., John Wiley and Sons, Inc., New York, NY.

Google Scholar

[16] Moaveni, B., He, X., Conte, J.P., and de Callafon, R.A. (2008). Damage identification of a composite beam using finite element model updating., Journal of computer Aided Civil and Infrastructure Engineering, 23(5), 339-359.

DOI: 10.1111/j.1467-8667.2008.00542.x

Google Scholar

[17] Ricardo Zaurin, and F., Necati Catbas, (2011). Structural health monitoring using video stream, influence lines, and statistical analysis., Structural Health Monitoring, 10(3), 309-332.

DOI: 10.1177/1475921710373290

Google Scholar

[18] Sanayei, M., and Nelson, R. B. (1986). Identification of structural element stiffnesses from incomplete static test data., SAE-861793, Aerospace Technology Conference and Exposition, Oct.

DOI: 10.4271/861793

Google Scholar

[19] Sanayei, M., and Scampoli, F., (1991a). Structural element stiffness identification from static test data., Journal of Engineering Mechanics, 117(5), 1021-1036.

DOI: 10.1061/(asce)0733-9399(1991)117:5(1021)

Google Scholar

[20] Sanayei, M., and Onipede, O. (1991b). Damage assessment of structures using static test data., AIAA J., 9(7), 1174-1179.

DOI: 10.2514/3.10720

Google Scholar

[21] Sanayei, M., Saletnik, M.J., (1996). Parameter estimation of structures from static strain measurements, part I: Formulation., Journal of Structural Engineering, 122(5), 555-562.

DOI: 10.1061/(asce)0733-9445(1996)122:5(555)

Google Scholar

[22] Sanayei, M., Imbaro, G.R., McClain, J.A.S., and Brown, L.C., (1997). Structural model updating using experimental static measurements., Journal of Structural Engineering, 123(6), 792-798.

DOI: 10.1061/(asce)0733-9445(1997)123:6(792)

Google Scholar

[23] Wendland H. (1995). Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degrees., Adv. Comput. Math., 4, 389-39.

DOI: 10.1007/bf02123482

Google Scholar

[24] Zaurin, R., and Catbas, F. N. (2010a). Integration of computer imaging and sensor data for structural health monitoring of bridges., Smart Mater. Struct., 19(1), 015019.

DOI: 10.1088/0964-1726/19/1/015019

Google Scholar

[25] Zaurin, R., and Catbas, F. N. (2010b). Structural health monitoring using computer vision and influence lines., Struct. Health Monit., 10(3), 309-332.

DOI: 10.1177/1475921710373290

Google Scholar

[26] Zhao, H., and Uddin, N. (2010a). Algorithm to identify axle weights for an innovative BWIM system. Part I., Proc., IABSE-JSCE Joint Conf. on Advances in Bridge Engineering-II, Bangladesh Association of Consulting Engineers and Bangladesh Association of Construction Industry, Dhaka, Bangladesh, 527-536.

Google Scholar

[27] Zhao, H., and Uddin, N. (2010b). Algorithm to identify axle weights for an innovative BWIM system. Part II., Proc., IABSE-JSCE Joint Conf. on Advances in Bridge Engineering-II, Bangladesh Association of Consulting Engineers and Bangladesh Association of Construction Industry, Dhaka, Bangladesh, 537-546.

Google Scholar