[1]
Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku, A ductile ceramic eutectic composite with high strength at 1, 873 K, Nature. 389 (1997) 49-52.
DOI: 10.1038/37937
Google Scholar
[2]
Y. Waku, S. Sakata, A. Mitani, K. Shimizu and M. Hasebe, Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites, J. Mater. Sci. 37 (2002) 2975-2982.
DOI: 10.1007/s10853-005-6311-z
Google Scholar
[3]
S. Abalı, Effect of growth rate on the microstructure and mechanical behavior of directionally solidified Y3Al5O12/MgAl2O4 eutectics, J. Cryst. Growth. 391 (2014) 18-24.
DOI: 10.1016/j.jcrysgro.2013.12.050
Google Scholar
[4]
S. Abalı, Microstructural stability and creep behavior of directionally solidified MgAl2O4/Y3Al5O12 eutectic composite, submitted to Adv. Mater. Res. Trans Tech Publications, Switzerland, (2014).
Google Scholar
[5]
E.C. Dickey, C.S. Frazer, T.R. Watkins and C.R. Hubbard, Residual stresses in high-temperature ceramic eutectics, J. Eur. Ceram. Soc. 19 (1999) 2503-2509.
DOI: 10.1016/s0955-2219(99)00100-4
Google Scholar
[6]
H. Ming-Yuan and J.W. Hutchinson, Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids. Struct. 25 (1989) 1053-1067.
DOI: 10.1016/0020-7683(89)90021-8
Google Scholar
[7]
J. LLorca, R.N. Singh, Influence of fiber and interfacial properties on fracture behavior of fiber-reinforced ceramic composites, J. Am. Ceram. Soc. 74 (1991) 2882-2890.
DOI: 10.1111/j.1151-2916.1991.tb06858.x
Google Scholar
[8]
S. Wang, T. Akatsu, Y. Tanabe and E. Yasuda, Phase compositions and microstructural characteristics of solidified Al2O3-rich spinel solid solution/YAG composite, J. Eur. Ceram. Soc. 20 (2000) 39-43.
DOI: 10.1016/s0955-2219(99)00073-4
Google Scholar
[9]
P.J. Withers, Residual stress and its role in failure, Rep. Prog. Phys. 70 (2007) 2211-2264.
DOI: 10.1088/0034-4885/70/12/r04
Google Scholar
[10]
J.A. Pardo, R.I. Merino, V.M. Orera, J.I. Peña, C. González, J.Y. Pastor and J. Llorca, Piezospectroscopic study of residual stresses in Al2O3-ZrO2 directionally solidified eutectics, J. Am. Ceram. Soc. 83 (2000) 2745-2752.
DOI: 10.1111/j.1151-2916.2000.tb01626.x
Google Scholar
[11]
M.C. Mesa, P.B. Oliete, Á. Larrea and V.M. Orera, Directionally Solidified Al2O3-Er3Al5O12-ZrO2 Eutectic ceramics with interpenetrating or nanofibrillar microstructure: residual stress analysis, J. Am. Ceram. Soc. 95 (2012) 1138-1146.
DOI: 10.1111/j.1551-2916.2011.05068.x
Google Scholar
[12]
E08 Committee, Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, (2013).
DOI: 10.1520/e0647-08e01
Google Scholar
[13]
K. Hirano, Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700 °C, J. Eur. Ceram. Soc. 25 (2005) 1191-1199.
DOI: 10.1016/j.jeurceramsoc.2005.01.003
Google Scholar
[14]
J. He and D.R. Clarke, Determination of the piezospectroscopic coefficients for chromium-doped sapphire, J. Am. Ceram. Soc. 78 (1995) 1347-1353.
DOI: 10.1111/j.1151-2916.1995.tb08493.x
Google Scholar
[15]
N.R. Harlan, R.I. Merino, J.I. Peña, A. Larrea, V.M. Orera, C. González, P. Poza and J. Llorca, Phase distribution and residual stresses in melt-grown Al2O3-ZrO2(Y2O3) eutectics, J. Am. Ceram. Soc. 85 (2002) 2025-(2032).
DOI: 10.1111/j.1151-2916.2002.tb00399.x
Google Scholar