Dependence of Relaxation Time on the Core Size Two-Phase Nanoparticles Magnetite/Titanomagnetite

Article Preview

Abstract:

In this paper, depending of the blocking temperature on magnetite core size for core/shell nanoparticles has been carried out using our theoretical model. Nanoparticles has size of 100nm, and magnetite core increases from 0nm to 100nm. Systems were studied with different values of exchange constant. The data obtained indicate that exchange constant increases the blocking temperature. However, the sign of the constant does not matter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

418-421

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Wise, M. Saenko, A.M. Velazquez, D.E. Laughlin, M. Dıaz-Michelena and M.E. McHenry, Phase Evolution in the Fe3O4–Fe2TiO4 Pseudo-Binary System and Its Implications for Remanent Magnetization in Martian Minerals, IEEE T. Magnetics 47 (2011).

DOI: 10.1109/tmag.2011.2157471

Google Scholar

[2] R. Sanz, M. Cerdan, M. E. McHenry and M. Dıaz-Michelena, Temperature Dependent Magnetization and Remanent Magnetization in Pseudo-Binary x(Fe2TiO4)-(1-x) (Fe3O4)(0. 30<x<1. 00) Titanomagnetites, IEEE Transactionson Magnetics 47 (2011) 4128–4131.

DOI: 10.1109/tmag.2011.2157903

Google Scholar

[3] C.I. Pearce, C.M.B. Henderson, R.A.D. Pattrick, G. van der Laan and D.J. Vaughan, Direct determination of cation site occupancies in natural ferrite spinels by L2, 3 X-ray absorption spectroscopy and X-ray magnetic circular dichroism, Am. Mineral. 91 (2006).

DOI: 10.2138/am.2006.2048

Google Scholar

[4] N. Millot, S. Begin-Colin, P. Perriat and G. Le Caer, Structure, Cation Distribution, and Properties of Nanocrystalline Titanomagnetites Obtained by Mechanosynthesis: Comparison with Soft Chemistry, J. Solid State Chem. 139 (1998) 66–78.

DOI: 10.1006/jssc.1998.7808

Google Scholar

[5] N. Guigue-Millot, S. Begin-Colin, Y. Champion, M.J. Hytch, G. Le Caer and P. Perriat, Control of grain size and morphologies of nanograined ferrites by adaptation of the synthesis route: mechanosynthesis and soft chemistry, J. Solid State Chem. 170 (2003).

DOI: 10.1016/s0022-4596(02)00012-9

Google Scholar

[6] C.I. Pearce, C.M.B. Henderson, N.D. Telling, R.A.D. Pattrick, J.M. Charnock, V.S. Coker, E. Arenholz, F. Tuna and G. van der Laan, Fe site occupancy in magnetite-ulvöspinel solid solutions: A new approach using X-ray magnetic circular dichroism, Am. Mineral. 95 (2010).

DOI: 10.2138/am.2010.3343

Google Scholar

[7] C.I. Pearce et al, Synthesis and properties of titanomagnetite (Fe3−xTixO4) nanoparticles: A tunable solid-state Fe(II/III) redox system, J. Colloid Interface Sci. 387 (2012) 24–38.

DOI: 10.1016/j.jcis.2012.06.092

Google Scholar

[8] L.L. Afremov, I.G. Ilyushin, Effect of Mechanical Stress on Magnetic States and Hysteresis Characteristics of a Two-Phase Nanoparticles System, J. Nanomater. 2013 (2013) 15.

DOI: 10.1155/2013/687613

Google Scholar