Effect of Inner Steel Tube Cross-Sectional Shape on Compressive Behavior of Square FRP-Concrete-Steel Double-Skin Tubular Columns

Article Preview

Abstract:

Recently, a new type of composite system was proposed in the form of fibre reinforced polymer (FRP)-concrete-steel double-skin tubular columns (DSTCs). The performance of this column system, which consists of an outer tube made of FRP and an inner tube made of steel, has been experimentally investigated in a number of studies. However, apart from a single study reported on square DSTCs, all of the existing studies have been concerned with DSTCs with circular external tubes. This paper reports on part of an ongoing experimental program at the University of Adelaide that was aimed at addressing this research gap. The effect of cross-sectional shape of inner steel tube on compressive behaviour of square DSTCs was investigated through the test of 16 hollow and concrete-filled DSTCs. The result of the experimental study indicate that concrete in hollow DSTCs with circular inner steel tubes develop significantly larger ultimate axial stresses and strains than concrete in companion hollow DSTCs with square inner steel tubes. On the other hand, the results also indicate that the presence of a concrete-filling inside inner steel tubes results in a significant improvement in the behavior of DSTCs with square inner steel tubes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

578-583

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ozbakkaloglu, J. C. Lim and T. Vincent, FRP-confined concrete in circular sections: Review and assessment of the stress-strain models., Eng. Struct. 49 (2013) 1068–1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[2] J. Lim and T. Ozbakkaloglu, (2013). Confinement model for FRP-confined high-strength concrete., J. Comp. Constr. ASCE, Doi: 10. 1061/(ASCE)CC. 1943–5614. 0000376.

DOI: 10.1061/(asce)cc.1943-5614.0000376

Google Scholar

[3] T. Ozbakkaloglu and J. C. Lim, Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model., Composites Part B: Eng. 55 (2013) 607-634.

DOI: 10.1016/j.compositesb.2013.07.025

Google Scholar

[4] J. Lim and T. Ozbakkaloglu (2014). Lateral strain-to-axial strain relationship of confined concrete., J. Struc. Eng. ASCE, Doi: 10. 1061/(ASCE)ST. 1943-541X. 0001094.

DOI: 10.1061/(asce)st.1943-541x.0001094

Google Scholar

[5] T. Rousakis and A. Karabinis, Substandard reinforced concrete members subjected to compression: FRP confining effects., Mater. Struc. 41(9) (2008) 1595–1611.

DOI: 10.1617/s11527-008-9351-4

Google Scholar

[6] T. Ozbakkaloglu and E. Akin, Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression., J. Comp. Constr. ASCE. 16(4) (2012) 451–463.

DOI: 10.1061/(asce)cc.1943-5614.0000273

Google Scholar

[7] T. Vincent and T. Ozbakkaloglu, Influence of Concrete Strength and Confinement Method on Axial Compressive Behavior of FRP Confined High- and Ultra High-Strength Concrete., Composites Part B-Eng. 50 (2013) 413–428.

DOI: 10.1016/j.compositesb.2013.02.017

Google Scholar

[8] A. Z. Fam and S. H. Rizkalla, Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes., ACI Struc. J. 98(4) (2001) 451–461.

DOI: 10.14359/10288

Google Scholar

[9] Y. Idris and T. Ozbakkaloglu, Seismic behavior of high-strength concrete-filled FRP tube columns,. ASCE, J. Comp. Constr. 17 (6) (2013).

DOI: 10.1061/(asce)cc.1943-5614.0000388

Google Scholar

[10] T. Ozbakkaloglu, Axial Compressive Behavior of Square and Rectangular High-Strength Concrete-Filled FRP Tubes., J. Comp. Constr. ASCE, 17(1) (2013) 151–161.

DOI: 10.1061/(asce)cc.1943-5614.0000321

Google Scholar

[11] T. Ozbakkaloglu, Concrete-filled FRP Tubes: Manufacture and Testing of New Forms Designed for Improved Performance., J. Comp. Constr. ASCE, 17(2) (2013) 280–281.

DOI: 10.1061/(asce)cc.1943-5614.0000334

Google Scholar

[12] T. Ozbakkaloglu, Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters., Eng. Struc. 51 (2013) 151–161.

DOI: 10.1016/j.engstruct.2013.01.017

Google Scholar

[13] T. Ozbakkaloglu, Behavior of square and rectangular ultra-high-strength concrete-filled FRP tubes under axial compression., Comp. Part B: Eng. 54 (2013) 97–111.

DOI: 10.1016/j.compositesb.2013.05.007

Google Scholar

[14] T. Ozbakkaloglu and T. Vincent, Axial Compressive Behavior of Circular High-Strength Concrete-Filled FRP Tubes., J. Comp. Constr. ASCE, 18 (2) (2013) 04013037.

DOI: 10.1061/(asce)cc.1943-5614.0000410

Google Scholar

[15] T. Vincent and T. Ozbakkaloglu, Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete., Constr. Build. Mater. 47 (2013) 814–826.

DOI: 10.1016/j.conbuildmat.2013.05.085

Google Scholar

[16] J. Lim and T. Ozbakkaloglu, Influence of silica fume on stress–strain behavior of FRP-confined HSC. " Constr. Build. Mater. 63 (2014) 11-24.

DOI: 10.1016/j.conbuildmat.2014.03.044

Google Scholar

[17] J. Lim and T. Ozbakkaloglu (2014). Hoop strains in FRP-confined concrete columns: experimental observations., Mater. Struc. Doi: 10. 1617/s11527-014-0358-8.

DOI: 10.1617/s11527-014-0358-8

Google Scholar

[18] T. Vincent and T. Ozbakkaloglu (2014). Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: Experimental study., J. Comp. Constr. ASCE, Doi: 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029.

DOI: 10.1061/(asce)cc.1943-5614.0000489

Google Scholar

[19] J. G. Teng, T. Yu, Y. L. Wong and S. L. Dong, Hybrid FRP concrete steel tubular columns: concept and behavior., Constr. Build. Mater. 21 (2007) 846–854.

DOI: 10.1016/j.conbuildmat.2006.06.017

Google Scholar

[20] Y. L. Wong, T. Yu, J. G. Teng and S. L. Dong, Behavior of FRP-confined concrete in annular section columns., Comp. Part B: Eng. 38 (2008) 451–466.

DOI: 10.1016/j.compositesb.2007.04.001

Google Scholar

[21] T. Yu and J. G. Teng, Behavior of hybrid FRP-Concrete-Steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression., J. Comp. Constr. ASCE, 17 (2) (2013) 271-279.

DOI: 10.1061/(asce)cc.1943-5614.0000331

Google Scholar

[22] T. Ozbakkaloglu and B. A. Louk Fanggi, (2013). Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete., J. Comp. Constr. ASCE, 18 (1): 04013027.

DOI: 10.1061/(asce)cc.1943-5614.0000401

Google Scholar

[23] T. Ozbakkaloglu and B. A. Louk Fanggi, (2013). FRP-HSC-Steel composite columns: behavior under monotonic and cyclic axial compression., Mater. Struc. Doi: 10. 1617/s11527-013-0216-0.

DOI: 10.1617/s11527-013-0216-0

Google Scholar

[24] B. A. Louk Fanggi and T. Ozbakkaloglu, Compressive behavior of hollow aramid FRP-HSC-steel double-skin tubular columns., Constr. Build. Mater. 48 (2013) 554-565.

DOI: 10.1016/j.conbuildmat.2013.07.029

Google Scholar

[25] T. Ozbakkaloglu and Y. Idris, (2013) Seismic behavior of FRP-high-strength concrete-steel double skin tubular columns., J. Struc. Eng. ASCE. 140 (6) ; 04014019.

DOI: 10.1061/(asce)st.1943-541x.0000981

Google Scholar

[26] Y. Idris and T. Ozbakkaloglu, Flexural behavior of FRP-HSC-steel composite beams., Thin-Walled Structures, 80 (2014) 207-216.

DOI: 10.1016/j.tws.2014.03.011

Google Scholar