[1]
T. Ozbakkaloglu, J. C. Lim and T. Vincent, FRP-confined concrete in circular sections: Review and assessment of the stress-strain models., Eng. Struct. 49 (2013) 1068–1088.
DOI: 10.1016/j.engstruct.2012.06.010
Google Scholar
[2]
J. Lim and T. Ozbakkaloglu, (2013). Confinement model for FRP-confined high-strength concrete., J. Comp. Constr. ASCE, Doi: 10. 1061/(ASCE)CC. 1943–5614. 0000376.
DOI: 10.1061/(asce)cc.1943-5614.0000376
Google Scholar
[3]
T. Ozbakkaloglu and J. C. Lim, Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model., Composites Part B: Eng. 55 (2013) 607-634.
DOI: 10.1016/j.compositesb.2013.07.025
Google Scholar
[4]
J. Lim and T. Ozbakkaloglu (2014). Lateral strain-to-axial strain relationship of confined concrete., J. Struc. Eng. ASCE, Doi: 10. 1061/(ASCE)ST. 1943-541X. 0001094.
DOI: 10.1061/(asce)st.1943-541x.0001094
Google Scholar
[5]
T. Rousakis and A. Karabinis, Substandard reinforced concrete members subjected to compression: FRP confining effects., Mater. Struc. 41(9) (2008) 1595–1611.
DOI: 10.1617/s11527-008-9351-4
Google Scholar
[6]
T. Ozbakkaloglu and E. Akin, Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression., J. Comp. Constr. ASCE. 16(4) (2012) 451–463.
DOI: 10.1061/(asce)cc.1943-5614.0000273
Google Scholar
[7]
T. Vincent and T. Ozbakkaloglu, Influence of Concrete Strength and Confinement Method on Axial Compressive Behavior of FRP Confined High- and Ultra High-Strength Concrete., Composites Part B-Eng. 50 (2013) 413–428.
DOI: 10.1016/j.compositesb.2013.02.017
Google Scholar
[8]
A. Z. Fam and S. H. Rizkalla, Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes., ACI Struc. J. 98(4) (2001) 451–461.
DOI: 10.14359/10288
Google Scholar
[9]
Y. Idris and T. Ozbakkaloglu, Seismic behavior of high-strength concrete-filled FRP tube columns,. ASCE, J. Comp. Constr. 17 (6) (2013).
DOI: 10.1061/(asce)cc.1943-5614.0000388
Google Scholar
[10]
T. Ozbakkaloglu, Axial Compressive Behavior of Square and Rectangular High-Strength Concrete-Filled FRP Tubes., J. Comp. Constr. ASCE, 17(1) (2013) 151–161.
DOI: 10.1061/(asce)cc.1943-5614.0000321
Google Scholar
[11]
T. Ozbakkaloglu, Concrete-filled FRP Tubes: Manufacture and Testing of New Forms Designed for Improved Performance., J. Comp. Constr. ASCE, 17(2) (2013) 280–281.
DOI: 10.1061/(asce)cc.1943-5614.0000334
Google Scholar
[12]
T. Ozbakkaloglu, Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters., Eng. Struc. 51 (2013) 151–161.
DOI: 10.1016/j.engstruct.2013.01.017
Google Scholar
[13]
T. Ozbakkaloglu, Behavior of square and rectangular ultra-high-strength concrete-filled FRP tubes under axial compression., Comp. Part B: Eng. 54 (2013) 97–111.
DOI: 10.1016/j.compositesb.2013.05.007
Google Scholar
[14]
T. Ozbakkaloglu and T. Vincent, Axial Compressive Behavior of Circular High-Strength Concrete-Filled FRP Tubes., J. Comp. Constr. ASCE, 18 (2) (2013) 04013037.
DOI: 10.1061/(asce)cc.1943-5614.0000410
Google Scholar
[15]
T. Vincent and T. Ozbakkaloglu, Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete., Constr. Build. Mater. 47 (2013) 814–826.
DOI: 10.1016/j.conbuildmat.2013.05.085
Google Scholar
[16]
J. Lim and T. Ozbakkaloglu, Influence of silica fume on stress–strain behavior of FRP-confined HSC. " Constr. Build. Mater. 63 (2014) 11-24.
DOI: 10.1016/j.conbuildmat.2014.03.044
Google Scholar
[17]
J. Lim and T. Ozbakkaloglu (2014). Hoop strains in FRP-confined concrete columns: experimental observations., Mater. Struc. Doi: 10. 1617/s11527-014-0358-8.
DOI: 10.1617/s11527-014-0358-8
Google Scholar
[18]
T. Vincent and T. Ozbakkaloglu (2014). Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: Experimental study., J. Comp. Constr. ASCE, Doi: 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029.
DOI: 10.1061/(asce)cc.1943-5614.0000489
Google Scholar
[19]
J. G. Teng, T. Yu, Y. L. Wong and S. L. Dong, Hybrid FRP concrete steel tubular columns: concept and behavior., Constr. Build. Mater. 21 (2007) 846–854.
DOI: 10.1016/j.conbuildmat.2006.06.017
Google Scholar
[20]
Y. L. Wong, T. Yu, J. G. Teng and S. L. Dong, Behavior of FRP-confined concrete in annular section columns., Comp. Part B: Eng. 38 (2008) 451–466.
DOI: 10.1016/j.compositesb.2007.04.001
Google Scholar
[21]
T. Yu and J. G. Teng, Behavior of hybrid FRP-Concrete-Steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression., J. Comp. Constr. ASCE, 17 (2) (2013) 271-279.
DOI: 10.1061/(asce)cc.1943-5614.0000331
Google Scholar
[22]
T. Ozbakkaloglu and B. A. Louk Fanggi, (2013). Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete., J. Comp. Constr. ASCE, 18 (1): 04013027.
DOI: 10.1061/(asce)cc.1943-5614.0000401
Google Scholar
[23]
T. Ozbakkaloglu and B. A. Louk Fanggi, (2013). FRP-HSC-Steel composite columns: behavior under monotonic and cyclic axial compression., Mater. Struc. Doi: 10. 1617/s11527-013-0216-0.
DOI: 10.1617/s11527-013-0216-0
Google Scholar
[24]
B. A. Louk Fanggi and T. Ozbakkaloglu, Compressive behavior of hollow aramid FRP-HSC-steel double-skin tubular columns., Constr. Build. Mater. 48 (2013) 554-565.
DOI: 10.1016/j.conbuildmat.2013.07.029
Google Scholar
[25]
T. Ozbakkaloglu and Y. Idris, (2013) Seismic behavior of FRP-high-strength concrete-steel double skin tubular columns., J. Struc. Eng. ASCE. 140 (6) ; 04014019.
DOI: 10.1061/(asce)st.1943-541x.0000981
Google Scholar
[26]
Y. Idris and T. Ozbakkaloglu, Flexural behavior of FRP-HSC-steel composite beams., Thin-Walled Structures, 80 (2014) 207-216.
DOI: 10.1016/j.tws.2014.03.011
Google Scholar